## CMOS Image Sensor with Image Signal Processing

# HV7161SPA2 1.3 Mega Pixel CIS (15fps@MCLK 21MHz, PLL 2x)

Preliminary V3.0

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

## **Revision History**

| Revision | Script Date     | Comments                                                          |  |  |  |
|----------|-----------------|-------------------------------------------------------------------|--|--|--|
| V0.0     | 2003/11/19/Wed. | 1.3Mega Pixel CIS Preliminary is released                         |  |  |  |
| V0.1     | 2004/03/19/Fri. | Some descriptions are corrected                                   |  |  |  |
| V0.2     | 2004/04/01/Wed. | Some PLL registers are changed.                                   |  |  |  |
| V0.2     | 2004/04/01/Wed. | Some descriptions are simplified.                                 |  |  |  |
| V0.3     | 2004/04/06/Tue. | Pin diagram is corrected and some analog registers are removed.   |  |  |  |
|          |                 |                                                                   |  |  |  |
|          | 2004/04/23/Fri. | Frame timing and integration time are corrected.                  |  |  |  |
|          | 2004/06/03/Thu. | Window mode and image size are corrected.                         |  |  |  |
| V0.6     | 2004/07/20/Tue. | Fixed frame rate                                                  |  |  |  |
| V0.7     | 2004/08/06/Fri. | PCTRB, Anti-Banding Mode                                          |  |  |  |
| V2.0     | 2004/08/12/Thu. | 1st full revision                                                 |  |  |  |
| V2.0     | 2004/08/12/1nu. | Device ID, Focus value, window mode, and image size               |  |  |  |
| V2.1     | 2004/08/27/Fri. | CLCC Package Drawing added                                        |  |  |  |
| V2.1     |                 | AWB Red/Blue Gain Maximum/Minimum Value                           |  |  |  |
| V2.2     | 2004/09/17/Fri. | Typical application, pin description, and pin function            |  |  |  |
| V2.3     | 2004/09/20/Mon. | Some register bits corrected and video mode setting modified.     |  |  |  |
| V2.4     | 2004/10/25/Tue. | Bayer 11bit enable(OUTFMT[31h])                                   |  |  |  |
|          |                 | * Output data according to video mode (page 54)                   |  |  |  |
|          |                 | * Pin diagram(symbol VDD:P and VDD:PH),                           |  |  |  |
|          | 2004/42/22/Thu  | * AC/DC characteristics (symbol and typical voltage condition),   |  |  |  |
| V2.5     | 2004/12/23/Thu. | and electro-optical characteristics (description) changed. QCIF   |  |  |  |
|          |                 | mode removed.                                                     |  |  |  |
|          |                 | * All 2.5V power supplies are changed to '2.5V to 2.8V'.          |  |  |  |
| \/0.C    | 0005/04/04/Tue  | DC Operating Conditions, Electro-Optical Characteristics and      |  |  |  |
| V2.6     | 2005/01/04/Tue. | Condition                                                         |  |  |  |
|          |                 | 2nd full revision                                                 |  |  |  |
| V3.0     | 2005/01/20/Thu. | Noise filter, Focal value generator, Contrast, Digital controlled |  |  |  |
|          |                 | analog gain calibration, and QCIF                                 |  |  |  |

Copyright by MagnaChip Semiconductor Ltd., all right reserved 2005

## Disclaimer

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

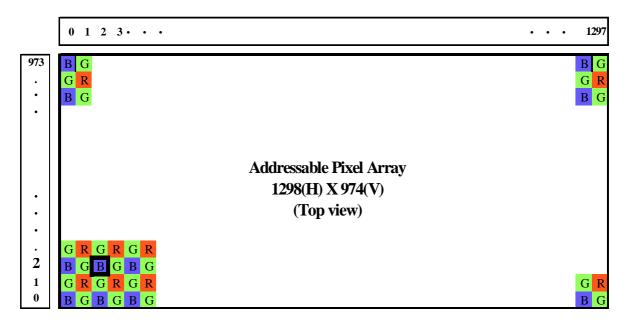
## **Contents**

| General Description4                                                                                                                                                                                                                                                                                                                                                                                   | 1              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Features4                                                                                                                                                                                                                                                                                                                                                                                              | 1              |
| Block Diagram5                                                                                                                                                                                                                                                                                                                                                                                         | 5              |
| Pin Diagram                                                                                                                                                                                                                                                                                                                                                                                            | 5              |
| Pin Description                                                                                                                                                                                                                                                                                                                                                                                        | 5              |
| Functional Description                                                                                                                                                                                                                                                                                                                                                                                 | )              |
| Pixel Architecture11Sensor Imaging Operation11Correlated Double Sampling and Programmable Gain Amplifier12On-chip ADC12Dark Noise Cancellation12Gamma Correction12Color Interpolation13Color Correction13Color Space Conversion14Output Formatter14Auto Exposure Control14Auto White Balance Control14On-chip frequency synthesizer15Luminance processing15Edge enhancement16Special image functions16 | 12222334445556 |
| Anti-Banding Configuration                                                                                                                                                                                                                                                                                                                                                                             |                |
| Register Description                                                                                                                                                                                                                                                                                                                                                                                   |                |
| Data Output Timing and Interface                                                                                                                                                                                                                                                                                                                                                                       |                |
| Output Data according to Video Mode                                                                                                                                                                                                                                                                                                                                                                    |                |
| Bayer Data Format                                                                                                                                                                                                                                                                                                                                                                                      |                |
| Window mode and image size                                                                                                                                                                                                                                                                                                                                                                             |                |
| I2C Chip Interface                                                                                                                                                                                                                                                                                                                                                                                     | 5              |
| AC/DC Characteristics                                                                                                                                                                                                                                                                                                                                                                                  | 7              |
| Electro-Optical Characteristics                                                                                                                                                                                                                                                                                                                                                                        | )              |
| Electro-Optical Test Condition                                                                                                                                                                                                                                                                                                                                                                         | )              |
| Typical Application71                                                                                                                                                                                                                                                                                                                                                                                  | ł              |
| CLCC Package Specification                                                                                                                                                                                                                                                                                                                                                                             | 2              |

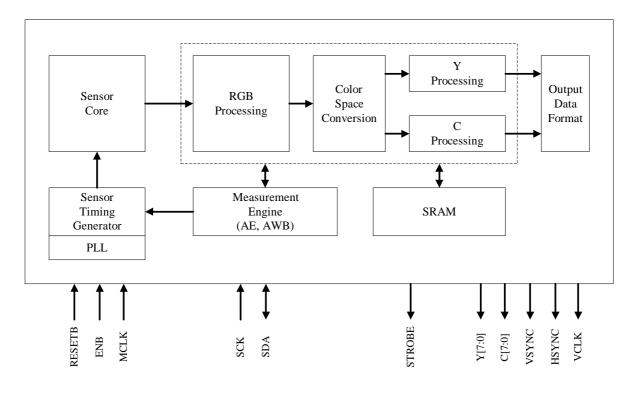
This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

## **General Description**

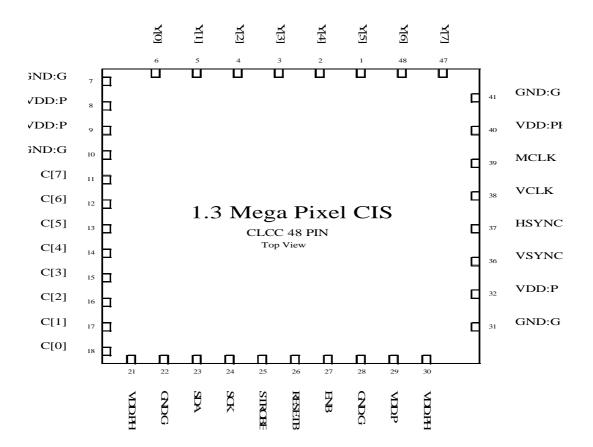
1.3Mega pixel CIS is a highly integrated single chip CMOS color image sensor implemented by proprietary MagnaChip 0.18um CMOS sensor process realizing high sensitivity and wide dynamic range. Total active pixel array is 1.3Mega size. Each active pixel composed of 4 transistors has a micro-lens to enhance sensitivity, and converts photon energy to analog pixel voltage. On-chip 11bit Analog to Digital Converter (ADC) digitizes analog pixel voltage, and on-chip Correlated Double Sampling (CDS) scheme reduces Fixed Pattern Noise (FPN) dramatically. General image processing functions are implemented to diversify its applications, and various output formats are supported for the sensor to easily interface with different video codec chips. The integration of sensor function and image processing functions make 1.3Mega pixel CIS especially very suitable for mobile imaging systems such as digital still camera, PC input camera and IMT-2000 phone's video part that requires very low power and system compactness.


## Features

- Optical format
   1/3.7 inch
- Total pixel array 1298 x 982
- Active window pixel array 1280 x 960
- Optical black array
   Upper: 2-line, Lower: 2-line
- Pixel size
   3.2μm x 3.2μm
- Color filter array
   RGB mosaic
- Micro-lens for high sensitivity and on-chip 11 bit ADC
- Correlated double sampling (CDS) for reduction of Fixed Pattern Noise (FPN)
- Auto Black Level Compensation (ABLC) for reduction of the dark signal
- Gamma correction by programmable piecewise linear approximation
- Optimized color interpolation, false color suppression, and edge enhancement
- Adaptive random noise filter
- Color correction by programmable 3x3 matrix operation
- Color space conversion from RGB to YCbCr or YUV
- Sub-sampling modes : 1/4(VGA), 1/16(QVGA), 4CIF, CIF, and QCIF
- Various output formats: CCIR-601, CCIR-656 Compatible
  - YCbCr 4:2:2, YCbCr 4:4:4, RGB 4:4:4, RGB5:6:5


8bit and 11bit Bayer raw

- 8bit/16bit Data Bus Mode
- Support fixed-frame rate mode and single shot mode
- Automatic Exposure control(AE) and Automatic White Balance control(AWB)
- Special image functions: hue, saturation, brightness, contrast, negative, sepia, gray, and mono.
- Focus value generation from image information for supporting auto focus function
- Hard and soft power save mode
- Typical supply voltage: Internal 1.8V and 2.5V to 2.8V, and I/O 2.5V to 2.8V
- Operation Temperature : -10 ~ +50 degrees Celsius
- Package Types: CLCC 48 PIN, COB(Chip-on-Board), COF(Chip-on-Flex)
- Internal wide-range PLL
- Frame Rate: 15fps at MCLK 21MHz and PLL 2x mode, or fixed frame rate supported.


- Total power consumption : about 73mW
- Pixel Array Structure



## Block Diagram



## Pin Diagram (CLCC 48LD)



## Pin Description (CLCC 48LD)

\* C[7:0] should be set up as pull-up or pull-down when 8bit output mode is used.

| Pin        | Туре | Symbol | Description                                                 |  |
|------------|------|--------|-------------------------------------------------------------|--|
| 47-48, 1-6 | В    | Y[7:0] | Video luminance data                                        |  |
| 7          | G    | DGNDI  | Digital ground for I/O driver                               |  |
| 8          | Р    | DVDDI  | 1.8V digital power for I/O driver                           |  |
| 9          | Р    | DVDDC  | 1.8V power for internal digital block                       |  |
| 10         | G    | DGNDC  | Ground for internal digital block                           |  |
| 11-18      | 0    | C[7:0] | Video chrominance data                                      |  |
| 21         | PH   | DVDDIH | 2.5V to 2.8V digital power for I/O driver                   |  |
| 22         | G    | DGNDIH | Digital ground for I/O Driver                               |  |
| 23         | В    | SDA    | I2C standard data I/O port                                  |  |
| 24         | I    | SCK    | I2C clock input                                             |  |
| 25         | 0    | STROBE | Strobe signal output                                        |  |
| 26         | I    | RESETB | Sensor reset. Active low                                    |  |
| 27         |      | ENB    | Sensor sleep mode is controlled externally by this pin when |  |

|      |                                             | sleep mode register bit SCTRB[4] is low.                    |  |
|------|---------------------------------------------|-------------------------------------------------------------|--|
|      |                                             | ENB low : sleep mode, ENB high : normal mode                |  |
| G    | DGNDI                                       | Digital ground for I/O driver                               |  |
| Р    | DVDDI                                       | 1.8V digital power for I/O driver                           |  |
| PH   | AVDDPH                                      | 2.5V to 2.8V analog power for pixel block                   |  |
| G    | AGNDC                                       | Analog ground for analog block                              |  |
| Р    | AVDDC                                       | 1.8V analog power for analog block                          |  |
| 0    | VSYNC                                       | Video frame synchronization signal. VSYNC is active at      |  |
| 36 O |                                             | start of image data frame.                                  |  |
| 0    |                                             | Video horizontal line synchronization signal. Image data is |  |
|      |                                             | valid, when HSYNC is high.                                  |  |
| 0    | VCLK                                        | Video output clock                                          |  |
| I    | MCLK                                        | Master input clock                                          |  |
| PH   | DVDDIH                                      | 2.5V to 2.8V digital power for I/O driver                   |  |
| G    | DGNDI                                       | Digital ground for I/O driver                               |  |
|      | P<br>PH<br>G<br>P<br>O<br>O<br>O<br>I<br>PH | PDVDDIPHAVDDPHGAGNDCPAVDDCOVSYNCOHSYNCOVCLKIMCLKPHDVDDIH    |  |

\* Pins 19-20, 33-35, 42-46 are not connected.

\* Pin function: B - CMOS Schmitt trigger, non-inverted, tri-state bidirectional buffer, 4mA drive

I - CMOS Schmitt trigger level non-inverting input

O - Tri-state non-inverting output, 4mA drive (VCLK - 8mA drive)

PH - 2.5V to 2.8V I/O or pixel power, P - 1.8V digital or analog power

G - Universal ground

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

## **Pin Function**

System power supply

DVDDC1.8V power supply for the internal digital circuit.AVDDC1.8V power supply for the internal analog circuit. Separate properlyfrom digital power, I/O power and signals.1.8V I/O power supply for the input/output/bidirectional pad.DVDDI1.8V I/O power supply for the input/output/bidirectional pad.AVDDPH2.5V to 2.8V power supply for the internal pixel array. Separateproperly from digital power, I/O power and signals.2.5V to 2.8V power supply for the input/output/bidirectional pad.WODIH2.5V to 2.8V power supply for the input/output/bidirectional pad.

## System ground

| DGNDC             | 1.8V ground for the internal digital circuit.                         |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| AGNDC             | 1.8V or 2.5V to 2.8V ground for the internal analog circuit. Separate |  |  |  |  |  |
| properly from dig | ital power, I/O power and signals.                                    |  |  |  |  |  |
| DGNDI             | 1.8V ground for the input/output/bidirectional pad.                   |  |  |  |  |  |
| DGNDIH            | 2.5V to 2.8V ground for the input/output/bidirectional pad.           |  |  |  |  |  |

#### Input pins

**RESETB** When RESETB pin is an active low input, an external reset is generated. And all internal registers are initialized and are loaded by each default value. It is required that reset period is holding for more than 4 MCLK clocks when ENB pin is high level. Shorter period is not guaranteed to produce a reset scheme and make a sensor be unstably operated. Active low RESETB pin generates all output pins except VCLK pin to low level. VCLK pin is not affected to RESETB pin.

**ENB** When ENB pin is an active high input, all functions of a sensor can be normally operated and so all output data are valid. If ENB pin is a low level, a sensor enters into a sleep mode and all functions are suspended. And all output pins hold each previous value. Sleep mode register SCTRB[4] bit means a soft-power down and ENB pin means a hard-power down. After RESETB pin is changed from a low to a high level,

ENB pin should be changed from a low to a high level. At the external (ENB) power-down mode, all output and bidirectional pins have a state of Hi-Z (high impedance). In addition to power-down mode, Y[7:0] and C[7:0] pins have a state of Hi-Z during HSYNC pin is low level. To minimize a power consumption at the external hard power-down mode (by ENB pin), the sensor's main power should be turned off together.

**MCLK** MCLK pin is a master clock of sensor and determines maximum frame rate. This pin generates video clock (VCLK) and is supplied from an external clock oscillator. Between the external clock oscillator and MCLK pin should be as near as possible.

**SCK** SCK is an input pin to be supplied I2C bus clock from master device and sensor get to be a slave device. SCK clock frequency is able up to maximum

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

400KHz. With SDA pin, SCK timing should satisfy the standard I2C bus timing.

#### Output pins

**Y[7:0]** Video luminance output is available only when VSYNC and HSYNC is active state, which VSYNC is low and HSYNC is high level. Data output is generated sequentially whenever VCLK is triggered from low to high level. So, you must capture the image data whenever VCLK is triggered from high to low level. If HSYNC is got to inactive state, each Y pin generates high-impedance output - necessary when an imaging system including sensor uses the common-bus mode. The first image data is normally BLUE color in the case of Bayer output mode, and LUMINANCE, YCbCr output mode. In power-down mode, Y[7:0] pins have a state of Hi-Z during HSYNC pin is low level.

**C[7:0]** With data bus mode set to RGB 4:4:4-16bit output or YCbCr 4:4:4-16bit output, video chrominance output is available only when VSYNC and HSYNC is active state, that VSYNC is low and HSYNC is high level (Otherwise, with 8bit data output mode, C pin always goes to high-impedance output mode). Data output is generated sequentially whenever VCLK is triggered from low to high level. So, you must capture the image data whenever VCLK is triggered from high to low level. If HSYNC is got to inactive state, each Y pin generates high-impedance output - necessary when an imaging system including sensor uses the common-bus mode. In power-down mode, C[7:0] pins have a state of Hi-Z during HSYNC pin is low level.

**VCLK** Video clock is always generated while sensor is being active operation. When HSYNC is active high, video clock has pulse count as a pixel amount corresponding to 1-line of specific image window. Data output is generated sequentially whenever VCLK is triggered from low to high level. So, you must capture the image data whenever VCLK is triggered from high to low level. When VSYNC is low and HSYNC is high level, total VCLK pulse count is equal to a total pixel amount of specific image window.

**\* Note :** With OUTINV[0] set to '1', valid data is generated when VCLK is trigged from high to low level, and you can capture the image data when VCLK is trigged from low to high level.

**HSYNC** Image data is valid, when HSYNC is high

VSYNC VSYNC is active at start of image data frame.

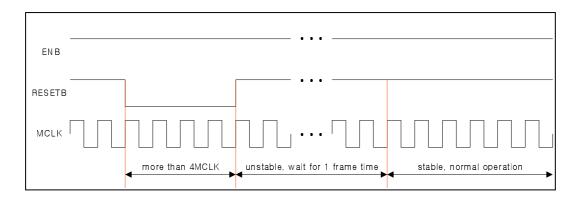
**STROBE** Though sensor has enough integration time to capture image, sensor can't obtain good image quality in dark environment. For this situation, sensor can generate strobe signal for driving external strobe circuit. The strobe output is active high when integration time is over than core frame time((Video Height Time + 1) X (Video Width Time + HBLANK)). Because sensor uses progressive exposure method, strobe signal should cover all line(all pixels).

**\* Note :** If a sensor is got into hard or soft sleep mode, all output pins generate highimpedance output - necessary when an imaging system including sensor uses the common-bus mode.

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

## **Bi-directional**

**SDA** SDA is the Serial Data line. The data on the SDA line must be stable during the HIGH period of the SCK clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCK line is LOW. Every byte put on the SDA line must be 8-bits long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first.


## **Functional Description**

#### Reset sequence

**Internal power –on reset (POR)** Sensor resets automatically by internal power-on reset circuit when power is supplied, and after 1 frame operation is done, all reset sequence is terminated as all internal registers are loaded to each default value, and sensor is stable. Therefore, image capturing or chip configuring should be executed on 1 frame time later from power-on.

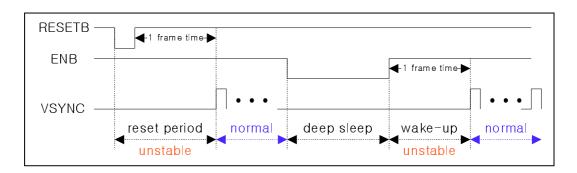
**External reset** When RESETB pin goes from high to low level, initialization is begun. After 1 frame operation is done, all reset sequence is terminated as all internal registers are loaded to each default value, and sensor is stable. Therefore, image capturing or chip configuring should be executed on 1 frame time later from external reset. We recommend initializing sensor by using RESETB pin before operating it. The condition to reset sensor follow,

- 1. MCLK is being supplied to sensor.
- 2. ENB pin is holding '1' and RESETB pin is '1'.
- 3. RESETB pin have to be keep '0' during minimum 4MCLK periods.
- 4. After RESETB pin set to '1' and 1 frame time is gone, reset sequence is terminated.



#### Power-down mode

**Internal soft power-down** For entering into soft power-down mode, set SCTRB[4] to '1'. In this mode, all internal digital and analog blocks go into an inactive mode(soft sleep), and power


This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

consumption is decreased considerably.

\* Note: You should set the integration time to multiple of AE-Step before waking power-down mode. This is because the default integration time and integration scan offset are set to multiples of 50Hz. If you leave out Integration time setting step, the banding under fluorescent light will be occurred even though other AE related registers are set appropriately. The setting order is follow,

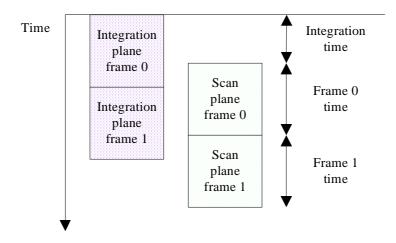
- 1. Enter into the soft power-down mode.
- 2. Set the AE step (minimum frame rate).
- 3. Set the integration time to 4 times of AE step.
- 4. Wake the soft power-down mode.

**External hard power-down** During ENB pin is '0', sensor goes to a deep-sleep mode(hard power-down mode) and all sensor operation is stopped. Also power consumption is minimized dramatically. After ENB pin goes from low to high level and 1 frame operation is done, sensor operation is stable and you can capture image data and configure each specific register. The sensor reset and hard power-down scheme follows,



\* Note: In the internal(I2C control) or external(ENB) power-down mode, all output and bidirectional pins have a state of Hi-Z(high impedance). In addition to power-down mode, Y[7:0] and C[7:0] pins have a state of Hi-Z during HSYNC pin is low level.

\* Note: To minimize a power consumption at the external hard power-down mode(by ENB pin), the sensor's main power should be turned off together.


### **Pixel Architecture**

Pixel architecture is a 4 transistor NMOS pixel design. The additional use of a dedicated transfer transistor in the architecture reduces most of reset level noise so that fixed pattern noise is not visible. Furthermore, micro-lens is placed upon each pixel in order to increase fill factor so that high pixel sensitivity is achieved.

## Sensor Imaging Operation

Imaging operation is implemented by the offset mechanism of integration domain and scan domain(rolling shutter scheme). First integration plane is initiated, and after the programmed integration time is elapsed, scan plane is initiated, then image data start being produced.

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.



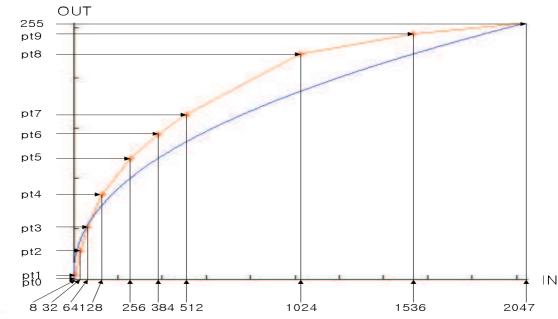
## Correlated Double Sampling(CDS) and Programmable Gain Amplifier(PGA)

Correlated double sampling is a circuit for reducing any correlated noise between reset signal and video data signal. First, reset signal is taken and held at the reset sampler. Second, video signal is taken and held at the data sampler. Final, these two signal is subtracted to null any common signal(fixed pattern noise), and thereby the correlated noise that exits at both the reset signal and video signal is minimized.

The above subtracted video signal is properly scaled by each R, G, and B programmable gain amplifier and sequentially transmitted from PGA to ADC via the serial line. The amplifier's gain is mutually controlled by auto-exposure control function(AE) and auto-white balance control function(AWB). Any internal offset or noise within the amplifier is removed by internal offset elimination circuit. The scaling range of pre-amplifier for AE is from 0.5X to 16.5X, and the scaling range of color-amplifier for AWB is from 0.5X to 3.5X.

### 11bit on-chip ADC

On-chip ADC converts analog pixel voltage to 11bit digital data. On-chip ADC has a low power, a high resolution, and a high conversion speed to be suitable at an imaging system. Internally, to null the parasitic offset and the fixed pattern noise of pixel, on-chip ADC has an offset adjustment circuit. Also, to increase the conversion rate on-chip ADC has a bias control circuit.


## Dark Noise Cancellation(DNC)

When an interesting center pixel has abnormally large value (decided to the 'dark noise') the center pixel is corrected by using neighbor pixels.

## Gamma Correction

Piecewise linear approximation method is implemented. Ten-piece linear segments are supported and user-programmable.

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.



In the above figure, the blue curve is 0.45 gamma effect and the red is default gamma effect. The x-axis label is value fixed by our sensor and it isn't able to be changed by user. User is able to change only pt0 ~ pt9(programmable gamma pointer : GMAP0 ~ GMPP9) and slp0 ~ slp9(gamma slop : GMAS0 ~ GMAS9) to be calculated by below equation,

x-axis(xpt) = [ 0, 8, 32, 64, 128, 256, 384, 512, 1024, 1536, 2047 ] - input data gamma pointer(pt) = [ 0, 4, 28, 52, 84, 120, 144, 164, 224, 244, 255 ] - output data (default) gamma slop(slp) =  $128 * \triangle xpt / \triangle pt$ 

## **Color Interpolation**

This method is supported to interpolate missing R, G, or B for mosaic image data from pixel array. Interpolation method for missing color is done by moving window, and the missing color on center of window is neighbor pixels.

## **Color Correction**

Color Correction is implemented by 3x3 matrix operation. Color correction matrix may be resolved by measuring sensor's color spread characteristics for primary color source and calculating the inverse matrix of color spread matrix. Matrix coefficients are programmable from -127/64 to 127/64. Programming register value for matrix coefficients should be resolved by the following equations.

For positive values, CMAxx = Integer(RealCoefficientValue x 64);

For negative values, CMAxx = TwoComplement(Integer(RealCoefficientValue x 64)); RealCoefficientValue values from -127/64 to 127/64 can be programmed.

Color-Correction Matrix(CCM) to correct the mismatch of Color Filter Array(CFA)

R' = 1.189R - 0.315G + 0.126B

G' = -0.259R + 1.838G - 0.579B

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

B' = -0.029R - 0.374G + 1.403B

\* Color-corrected R'G'B' = CCM \* Gamma-corrected RGB

\* In the above equations, R, G, and B are gamma-corrected values.

#### **Color Space Conversion**

For color space conversion matrix, the equation from CCIR-601 standard is normally used.

1. RGB to YUV Color Space Conversion(CSC) equation

V = (131R' - 110G' - 21B') / 256 + 128 Range: 16 ~ 240

Y = (77R' + 150G' + 29B') / 256 Range: 16 ~ 235

U = (-44R' -87G' + 131B') / 256 + 128 Range: 16 ~ 240

\* VYU = CSC \* Color-corrected R'G'B' + [ 128 0 128 ]

YUV to RGB reverse conversion equation

R = Y + 1.371(V - 128) G = Y - 0.698(V - 128) - 0.336(U - 128)B = Y + 1.732(U - 128)

2. RGB to YCbCr Color Space Conversion(CSC) equation

Cr = (112R' - 94G' - 18B') / 256 + 128 Output range: 16 ~ 240 Y = (66R' + 129G' + 25B') / 256 + 16 Output range: 16 ~ 235 Cb = (-38R' - 74G' + 112B') / 256 + 128 Output range: 16 ~ 240  $\approx$  CrYCb = CSC \* Color-corrected R'G'B' + [128 16 128]

YCbCr to RGB reverse conversion equation

 $\begin{array}{ll} \mathsf{R} & = 1.1636 \mathrm{Y} - 0.0029 \mathrm{Cb} + 1.5991 \mathrm{Cr} - 222.9271 \\ \mathsf{G} & = 1.1636 \mathrm{Y} - 0.3914 \mathrm{Cb} - 0.8184 \mathrm{Cr} + 136.2322 \\ \mathsf{B} & = 1.1636 \mathrm{Y} + 2.0261 \mathrm{Cb} + 0.0016 \mathrm{Cr} - 278.1660 \\ \end{array}$ 

### **Output Formatter**

The output formats such as 8bit Bayer Raw Data, 16bit RGB 4:4:4, 16bit YCbCr 4:4:4, 8bit/16bit YCbCr 4:2:2, and 8bit RGB5:6:5 are supported. Possible output bus widths are 8 bits or 16bits, and the sequence of Cb and Cr are programmable. The output formats are compatible with Recommendation CCIR-601, CCIR-656.

#### Auto Exposure Control

Y mean value is continuously calculated every frame, and the integration time and the analog preamplifier gain value are mutually increased or decreased according to difference between target and current frame Y mean value.

### Auto White Balance Control

Cb, Cr frame mean value is calculated every frame, and according to Cb, Cr frame mean values'

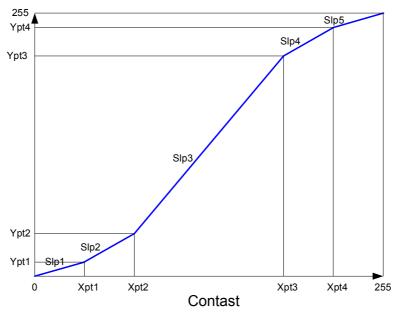
This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

displacement from Cb, Cr white target point, R, B scaling values for R, B data are resolved and R, G color gain is mutually increased or decreased.

#### On-chip frequency synthesizer (PLL)

The PLL is a 1.8V CMOS analog programmable frequency synthesizer based on charged pump type PLL for an on-chip application. PLL has a wide output range. Operating frequency and loop characteristics of PLL are fully programmable. When it is used with the default mode(2x), the output frame rate is supported up to 15frame per second at MCLK 21MHz and VCLK generates up to 42MHz.

#### Luminance processing - Contrast and brightness


For contrast adjustment, Y digital channels are scaled by the contrast factor. Contrast factor resolution is 1/128 and its range is  $0 \sim 255/128$ .

For brightness adjustment, there is added a brightness factor to Y digital channels. Brightness factor range is  $-128 \sim 127$  and register value for brightness adjustment is following below.

For positive values, Brightness factor = Integer;

For negative values, Brightness factor = Two's Complement(Integer);

For example, if brightness factor is 3, register value is 8'h03 and if brightness factor is -3, register value is 8'hfd.



Chrominance processing - Hue, saturation, chroma suppression, and false color suppression

For saturation adjustment, Cb, Cr digital Channels are scaled by the saturation factor. Saturation factor resolution is 1/128 and its range is  $0 \sim 255/128$ .

Chroma suppression is performed in the dark environment for suppressing the color and decreasing dark bad pixel effect. Suppression level is varied in accordance with amplifier gain and

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

saturation level is user-programmable.

#### Edge enhancement

Edge enhancement is performed for increasing sharpness of image. Edge weight factor is userprogrammable.

#### Special image functions

Special image functions support the negative, mono, gray, level, and sepia image.

## Frame Timing

For clear description of frame timing, clocks' acronym and relation are reminded in here again.

#### < Clock Acronym Definition >

| MCP : Master Clock Period | DCP : Divided Clock Period          |
|---------------------------|-------------------------------------|
| SCP : Sensor Clock Period | ICP : Image Processing Clock Period |
| VCP : Video Clock Period  | LCP : Line Clock Period             |

#### < Clock Frequency Relation >

| MCP : MCP                                           | DCP : MCP * Clock Division                                                                      |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|
| SCP : DCP * 2                                       | SCPfor color interpolation,ICPSCP * 2 for 1/4 subsampling modeSCP * 4 for 1/16 subsampling mode |
| VCP : ICP for 16bit output, ICP / 2 for 8bit output | LCP : HBLANK Period + HSYNC Period                                                              |

HBLANK Period : HBLANK Time register value \* SCP

HSYNC Period : HSYNC Active Time

#### < Frame Time Calculation >

Core Frame Time is (IDLE SLOT + Video Height \* LCP), and Real Frame Time is resolved as follows.

When Integration Time > Core Frame Time, Real Frame Time is (Integration Time + VBLANK \* LCP),

otherwise is (Core Frame Time + VBLANK \* LCP).

If Integration Time < Core Frame Time, Real Frame Time is

{(1280 + 214) \* (960 + 10) + SCTRC[0] \* 4928} \* SCP = 1454108 \* 47.62ns = 0.069245sec,

else Real Frame Time is

{Integration Time + 8 \* (208 + 1280) } \* SCP.

#### 1. 1/4 Sub-sampling Timing

In 1/4 subsampling mode, valid video data is produced every other line, i.e. for 960 lines, active video lines are 432 lines. HSYNC active time is equal to HSYNC active time of color interpolation

mode, but video clock frequency is half of color interpolation mode's to produce half size output in horizontal direction. Frame rate at the 1/4 ISP sub-sampling mode is equal to the full mode, but at the 1/4 Bayer sub-sampling mode, double of the full mode.

#### 2. 1/16 Sub-sampling Timing

In 1/16 subsampling mode, valid video data is produced every four line, i.e. for 960 lines, active video lines are 216 lines. HSYNC active time is equal to HSYNC active time of color interpolation mode, but video clock frequency is a quarter of color interpolation mode's to produce a quarter size output in horizontal direction. Frame rate at the 1/16 ISP sub-sampling mode is equal to the full mode, but at the 1/16 Bayer sub-sampling mode, 4 times of the full mode.

## Anti-Banding Configuration

For Anti-Banding mode to work correctly, the following registers should be configured to the appropriate values.

| AE Mode1                        | 70h    | Anti-Banding Enable[6]                                |
|---------------------------------|--------|-------------------------------------------------------|
| AE Anti-Banding Step            | 7a-7ch | SCP * (2 x power line frequency)                      |
| AE Integration Time Limit 7d-7f |        | The value should be multiples of AE Anti-Banding Step |

When Anti-Banding is enabled, AE initializes Integration Time registers[73-75h] to 4 x Anti-Banding Step value[7a-7ch], and integration increment/decrement amount is set to Anti-Banding Step value in order to remove anti-banding noise caused by intrinsic energy waveform of light sources. Banding noise is inherent in CMOS image sensor that adopts rolling shutter scheme for image acquisition.

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

## **Register Description**

| Symbol | Address<br>(Hex) | Default<br>(Hex) | Recommend<br>(Hex) | Description                            |
|--------|------------------|------------------|--------------------|----------------------------------------|
| DEVID  | 00               | 61               |                    | Device ID                              |
| SCTRA  | 01               | 23               | 13                 | Sensor Control A                       |
| SCTRB  | 02               | 00               |                    | Sensor Control B                       |
| SCTRC  | 03               | 01               |                    | Sensor Control C                       |
| RSAU   | 08               | 00               |                    | Row Start Address Upper                |
| RSAL   | 09               | 02               |                    | Row Start Address Lower                |
| CSAU   | 0A               | 00               |                    | Column Start Address Upper             |
| CSAL   | 0B               | 02               |                    | Column Start Address Lower             |
| WIHU   | 0C               | 03               |                    | Window Height Upper                    |
| WIHL   | 0D               | C0               |                    | Window Height Lower                    |
| WIWU   | 0E               | 05               |                    | Window Width Upper                     |
| WIWL   | 0F               | 00               |                    | Window Width Lower                     |
| HBLU   | 10               | 00               |                    | Horizontal Blank Time Upper            |
| HBLL   | 11               | D0               |                    | Horizontal Blank Time Lower            |
| VBLU   | 12               | 00               |                    | Vertical Blank Time Upper              |
| VBLL   | 13               | 08               |                    | Vertical Blank Time Lower              |
| RCG    | 14               | 15               | 20                 | Red Color Gain                         |
| GCG    | 15               | 15               | 20                 | Green Color Gain                       |
| BCG    | 16               | 15               | 20                 | Blue Color Gain                        |
| PGAVAL | 17               | 08               | 22                 | Amp Gain for Pixel Output              |
| PGAMIN | 18               | 00               | 14                 | Amp Gain Minimum Value                 |
| PGAMAX | 19               | FF               | 5F                 | Amp Gain Maximum Value                 |
| PGANOM | 1A               | 08               | 22                 | Amp Gain Normal Value                  |
| RCLMP  | 1C               | 07               | 07                 | Clamp Enable, Reset Level Clamp Enable |
| PXLBS  | 1D               | 11               | 66                 | Pixel Bias and Shift Bias controls     |
| PGABS  | 1E               | 77               | d3                 | PGA Bias and CDS Bias controls         |

| ADCBS   | 1F | 20 |    | ADC Bias controls                                    |
|---------|----|----|----|------------------------------------------------------|
| OREDI   | 21 | 7F | 85 | ADC Initial Offset Value for Optical Black Red       |
| OGRNI   | 22 | 7F | A0 | ADC Initial Offset Value for Optical Black<br>Green  |
| OBLUI   | 23 | 7F | 85 | ADC Initial Offset Value for Optical Black Blue      |
| OREDU   | 24 | RO |    | ADC Red Update Offset                                |
| OGRNU   | 25 | RO |    | ADC Green Update Offset                              |
| OBLUU   | 26 | RO |    | ADC Blue Update Offset                               |
| BLKTH   | 27 | FF |    | Black Level Threshold Value                          |
| CREDI   | 28 | 00 |    | Digital Compensation Red Offset Value                |
| CGRNI   | 29 | 00 |    | Digital Compensation Green Offset Value              |
| CBLUI   | 2A | 00 |    | Digital Compensation Blue Offset Value               |
| ISPFUN  | 30 | 02 | FE | Image Signal Processing Functions Enable             |
| OUTFMT  | 31 | 30 |    | Image Data Output Format                             |
| OUTINV  | 32 | 00 |    | Output Signal Inversion                              |
| DNCMODE | 33 | 21 |    | Dark Noise Cancellation Mode                         |
| DNCGAIN | 34 | 3E |    | Preamp. Gain to activate Dark Noise Cancellation     |
| DNCINTH | 35 | 13 | 26 | Integration time to activate Dark Noise Cancellation |
| DNCINTM | 36 | 12 | 26 | Integration time to activate Dark Noise Cancellation |
| CRCM11  | 37 | 2F | 2C | Color Correction matrix coefficient 11               |
| CRCM12  | 38 | DB | D5 | Color Correction matrix coefficient 12               |
| CRCM13  | 39 | F6 | FE | Color Correction matrix coefficient 13               |
| CRCM21  | 3A | 0F | 13 | Color Correction matrix coefficient 21               |
| CRCM22  | 3B | 28 | 2E | Color Correction matrix coefficient 22               |
| CRCM23  | 3C | 08 | 00 | Color Correction matrix coefficient 23               |
| CRCM31  | 3D | F5 | F0 | Color Correction matrix coefficient 31               |
| CRCM32  | 3E | C3 | BD | Color Correction matrix coefficient 32               |
| CRCM33  | 3F | 3D | 51 | Color Correction matrix coefficient 33               |
| GMAP0   | 40 | 00 | 00 | Start point for gamma line segment 0                 |
| GMAP1   | 41 | 01 | 04 | Start point for gamma line segment 1                 |
|         |    |    |    | 1                                                    |

| GMAP2      | 42 | 08 | 0B | Start point for gamma line segment 2          |
|------------|----|----|----|-----------------------------------------------|
| GMAP3      | 43 | 20 | 13 | Start point for gamma line segment 3          |
| GMAP4      | 44 | 3A | 20 | Start point for gamma line segment 4          |
| GMAP5      | 45 | 58 | 36 | Start point for gamma line segment 5          |
| GMAP6      | 46 | 6D | 49 | Start point for gamma line segment 6          |
| GMAP7      | 47 | 7D | 5A | Start point for gamma line segment 7          |
| GMAP8      | 48 | AE | 98 | Start point for gamma line segment 8          |
| GMAP9      | 49 | D7 | CE | Start point for gamma line segment 9          |
| GMAS0      | 4A | 10 | 40 | Slope value for gamma line segment 0          |
| GMAS1      | 4B | 25 | 27 | Slope value for gamma line segment 1          |
| GMAS2      | 4C | 60 | 1F | Slope value for gamma line segment 2          |
| GMAS3      | 4D | 34 | 1A | Slope value for gamma line segment 3          |
| GMAS4      | 4E | 1E | 16 | Slope value for gamma line segment 4          |
| GMAS5      | 4F | 15 | 13 | Slope value for gamma line segment 5          |
| GMAS6      | 50 | 10 | 12 | Slope value for gamma line segment 6          |
| GMAS7      | 51 | 0C | 0F | Slope value for gamma line segment 7          |
| GMAS8      | 52 | 0A | 0D | Slope value for gamma line segment 8          |
| GMAS9      | 53 | 0A | 0C | Slope value for gamma line segment 9          |
| RCRCONST   | 54 | 57 |    | Inverse Color Space Conversion Constant for R |
| GCRCONST   | 55 | D4 |    | Inverse Color Space Conversion Constant for G |
| GCBCONST   | 56 | EB |    | Inverse Color Space Conversion Constant for G |
| BCBCONST   | 57 | 6E |    | Inverse Color Space Conversion Constant for B |
| SINX       | 58 | 00 |    | Hue Sin value                                 |
| COSX       | 59 | 80 |    | Hue Cos value                                 |
| BRIGHTNESS | 5B | 00 |    | Brightness value                              |
| SATURATION | 5C | 80 |    | Saturation value                              |
| EGWTCON    | 5D | 00 | 03 | Edge Weight Control Value                     |
| EDTHLO     | 5E | 10 | 07 | Edge Enhancement Threshold Low                |
| SUPGMIN    | 60 | 24 |    | Suppression Pre Amp Gain Min                  |

| SATGMIN       | 61 | 24 |    | Saturation Pre Amp Gain Min             |
|---------------|----|----|----|-----------------------------------------|
| EDGGMIN       | 62 | 24 |    | Edge Enhancement Preamp. Gain Min       |
| HIEDGVAL      | 63 | FF |    | Edge Enhancement Higher Limit Value     |
| FCORTHLO      | 64 | 00 |    | False Color Suppression Threshold Low   |
| FCORTHHI      | 65 | FF |    | False Color Suppression Threshold High  |
| CONSTRAST     | 66 | 00 |    | Contrast                                |
| CONTVALUE     | 67 | 00 |    | Contrast Control Value                  |
| SPESEL        | 68 | 00 |    | Special Image Functions Mode            |
| SPETHVALUE    | 69 | 00 |    | Special Image Functions Threshold value |
| AF_CTRL       | 6A | A6 |    | Auto Focus Value Control                |
| AF_WinWgt     | 6B | CD |    | Window Weight Control for AF            |
| AF_EdgTh      | 6C | 00 |    | Edge Threshold for AF                   |
| AF_StateThH   | 6D | 00 |    | State-decision Threshold High for AF    |
| AF_StateThL   | 6E | 0A |    | State-decision Threshold Low for AF     |
| AEMODE1       | 70 | 29 | 69 | AE Mode1                                |
| AEMODE2       | 71 | ED |    | AE Mode2                                |
| AEWINWGT      | 72 | CD |    | AE Window Weight                        |
| INTH          | 73 | 02 |    | Integration Time High                   |
| INTM          | 74 | 71 |    | Integration Time Middle                 |
| INTL          | 75 | 03 |    | Integration Time Low                    |
| LUTARGET1     | 76 | 5A | 50 | AE In-Door Target                       |
| LUTARGET2     | 77 | 5A | 50 | AE Out-Door Target                      |
| AELOCKFINEBND | 78 | F6 | F4 | AE Lock Boundary                        |
| AEUNLOCKBND   | 79 | 2A | 2B | AE Unlock Boundary                      |
| AEINTSTEPH    | 7A | 01 | 01 | AE Anti-Flicker Step High               |
| AEINTSTEPM    | 7B | 38 | 96 | AE Anti-Flicker Step Middle             |
| AEINTSTEPL    | 7C | 80 | E6 | AE Anti-Flicker Step Low                |
| AEINTLIMITH   | 7D | 09 | 26 | AE Maximum Limit High                   |
| AEINTLIMITM   | 7E | C4 | 25 | AE Maximum Limit Middle                 |
| AEINTLIMITL   | 7F | 00 | 90 | AE Maximum Limit Low                    |

| AWBMODE      | 80 | 18 | 38 | AWB Mode                             |
|--------------|----|----|----|--------------------------------------|
| AWBWINWGT    | 82 | 00 |    | AWB Window Weight                    |
| CBTARGT      | 83 | 80 | 7C | AWB Cb Target Position               |
| CRTARGT      | 84 | 80 | 7C | AWB Cr Target Position               |
| AWBLOCKBND   | 85 | 04 |    | AWB Lock Boundary                    |
| AWBUNLOCKBND | 86 | 20 |    | AWB Unlock Boundary                  |
| CBWHITEBND   | 87 | 30 |    | AWB Cb White Pixel Boundary          |
| CRWHITEBND   | 88 | 30 |    | AWB Cr White Pixel Boundary          |
| AWBCBND      | 89 | 30 |    | AWB Cb + Cr Boundary                 |
| AEFSM        | 8C | RO |    | AE State Machine                     |
| AWBFSM       | 8D | RO |    | AWB State Machine                    |
| LUFMEAN      | 8E | RO |    | Lu Frames Mean                       |
| CBFMEAN      | 8F | RO |    | Cb Frame Mean                        |
| CRFMEAN      | 90 | RO |    | Cr Frame Mean.                       |
| KLBNDMIN     | 91 | 14 |    | Anti Banding Preamp Gain Min         |
| KLBNDMAX     | 92 | 3D | 2D | Anti Banding Preamp Gain Max         |
| AWBWHITE     | 93 | FF |    | Awb White Pixel Boundary             |
| AWBBLACK     | 94 | 00 |    | Awb Black Pixel Boundary             |
| AWBNUMBER    | 95 | 02 |    | Awb Valid Number                     |
| INTSCNOFSH   | 96 | RO |    | Integration – Scan Plane Offset High |
| INTSCNOFSM   | 97 | RO |    | Integration – Scan Plane Offset Mid  |
| INTSCNOFSL   | 98 | RO |    | Integration – Scan Plane Offset Low  |
| AWBRGAINMAX  | 9A | 7F | 3F | AWB Red Gain Maximum Value           |
| AWBRGAINMIN  | 9B | 00 |    | AWB Red Gain Minimum Value           |
| AWBBGAINMAX  | 9C | 7F | 3F | AWB Blue Gain Maximum Value          |
| AWBBGAINMIN  | 9D | 00 |    | AWB Blue Gain Minimum Value          |
| PCTRA        | A0 | 01 | 00 | PLL Control Register A               |
| PCTRB        | A1 | 1D | 10 | PLL Control Register B               |
| PREFDIV      | A3 | 01 |    | PLL Reference Divisor                |
| PFDDIVH      | A4 | 00 |    | PLL Feedback Divisor High            |

| PFDDIVL    | A5 | 02 |    | PLL Feedback Divisor Low            |
|------------|----|----|----|-------------------------------------|
| AF_State   | B0 | RO |    | Current State for AF                |
| AF_Value4  | B1 | RO |    | Focal Value 4th Byte for AF (Upper) |
| AF_Value3  | B2 | RO |    | Focal Value 3rd Byte for AF         |
| AF_Value2  | B3 | RO |    | Focal Value 2nd Byte for AF         |
| AF_Value1  | B4 | RO |    | Focal Value 1st Byte for AF (Lower) |
| NFILTERCON | B5 | 04 | 84 | Adaptive Noise Filter Control       |

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

#### Device ID [DEVID : 00h : 61h]

| 7 | 6     | 5      | 4 | 3 | 2        | 1      | 0 |
|---|-------|--------|---|---|----------|--------|---|
|   | Produ | uct ID |   |   | Revision | Number |   |
| 0 | 1     | 1      | 0 | 0 | 0        | 0      | 1 |
|   |       |        |   |   |          |        |   |

High Nibble represents product number, Low Nibble represents revision number.

#### Sensor Control A [SCTRA : 01h : 23h]

| 7        | 6                      | 5      | 4      | 3       | 2     | 1     | 0    |
|----------|------------------------|--------|--------|---------|-------|-------|------|
| Reserved | Fixed<br>Frame<br>Rate | X-Flip | Y-Flip | CifMode | SSSel | Video | Mode |
| 0        | 0                      | 1      | 0      | 0       | 0     | 1     | 1    |

| Fixed Frame Rate | Sensor supports the fixed frame rate with anti-banding mode                                                  |  |  |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| X-Flip           | Image is horizontally flipped                                                                                |  |  |  |  |  |
| Y-Flip           | Image is vertically flipped                                                                                  |  |  |  |  |  |
| CifMode          | 4CIF, CIF(1/4 sub-sampling), or QCIF(1/16 sub-sampling) mode enable                                          |  |  |  |  |  |
|                  | Sub-Sampling mode                                                                                            |  |  |  |  |  |
| SSSel            | 0 ISP Sub-Sampling. Image quality is better than Bayer Sub-<br>Sampling, but Core Frame Rate doesn't change. |  |  |  |  |  |
|                  | Bayer Sub-Sampling. Image quality is lower than ISP Sub-<br>Sampling, but Core Frame Rate is double.         |  |  |  |  |  |
|                  | 11 No Scaling mode                                                                                           |  |  |  |  |  |
| Video Mode       | 10 1/4 sub-sampling                                                                                          |  |  |  |  |  |
|                  | 01 1/16 sub-sampling                                                                                         |  |  |  |  |  |
|                  | 00 No Scaling mode (equal to '11')                                                                           |  |  |  |  |  |

#### Sensor Control B [SCTRB : 02h : 00h]

| 7      | 6        | 5      | 4             | 3                | 2 | 1             | 0 |
|--------|----------|--------|---------------|------------------|---|---------------|---|
| AE/AWB | Datapath | Analog | Clean         | Ctraba           |   |               |   |
| Block  | Block    | Block  | Sleep<br>Mode | Strobe<br>Enable | ( | Clock Divisio | n |
| Sleep  | Sleep    | Sleep  | wode          | Enable           |   |               |   |
| 0      | 0        | 0      | 0             | 0                | 0 | 0             | 0 |

| AE/AWB Block Sleep   | AE/AWB block goes into sleep mode with this bit set to high.                    |
|----------------------|---------------------------------------------------------------------------------|
| Datapath Block Sleep | Image processing datapath block goes into sleep mode with this bit set to       |
|                      | high.                                                                           |
| Analog Block Sleep   | All internal analog block goes into sleep mode with this bit set to high. With  |
| Analog Block Sleep   | All Digital Block Sleep active, sensor goes into power down mode.               |
| Sleep Mode           | All internal digital and analog block goes into soft sleep with this bit set to |

|                | high.                                                                         |
|----------------|-------------------------------------------------------------------------------|
|                | When strobe signal is enabled by this bit, STROBE pin will indicates when     |
| Strobe Enable  | strobe light should be splashed in the dark environment to get adequate       |
|                | lighted image.                                                                |
|                | Divides input master clock(IMC) for internal use. Internal divided clock      |
|                | frequency(DCF) is defined as master clock frequency(MCF) divided by           |
| Clock Division | specified clock divisor. Internal divided clock frequency(DCF) is as follows. |
|                | 000 : MCF, 001 : MCF/2, 010 : MCF/4, 011 : MCF/8                              |
|                | 100 : MCF/16, 101 : MCF/32, 110 : MCF/64, 111 : MCF/128                       |

#### Sensor Control C [SCTRC : 03h : 01h]

| 7                | 6      | 5       | 4        | 3        | 2        | 1      | 0       |
|------------------|--------|---------|----------|----------|----------|--------|---------|
| Bayer            | Single | Black   |          |          |          | Black  | Black   |
|                  | Shot   | Level   | HSYNC in | record   | record   | Level  | Level   |
| Output<br>Enable | Mode   | Average | VBLANK   | reserved | reserved | Data   | Compens |
| Enable           | Mode   | Output  |          |          |          | Enable | ation   |
| 0                | 0      | 0       | 0        | 0        | 0        | 0      | 1       |

| Bayer Output Enable        | More information is available on Bayer Data Format section.                                                                                                                   |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single Shot Mode           | With this register set to High, single video image is streamed out.                                                                                                           |
| Black Level Average        | This bit enable R/G/B Active Offset registers[24h-26h] to represent black                                                                                                     |
| Output                     | level average value, instead of updated active offset values                                                                                                                  |
| HSYNC in VBLANK            | VBLANK is equivalent to VSYNC, and HSYNC is the inversion of<br>HBLANK, and this bit controls whether HSYNC is active or not when<br>VBLANK unit is LCF.<br>VSYNC<br>(VBLANK) |
| Black Level Data<br>Enable | HSYNC is generated for light-shielded pixels in 4 lines.                                                                                                                      |
| Black Level                | Black level average values of light-shielded pixels are compensated when                                                                                                      |
| Compensation               | active image data is produced.                                                                                                                                                |

#### Row Start Address Upper [RSAU : 08h : 00h]

| 7  | 6  | 5    | 4     | 3  | 2  | 1 | 0                |
|----|----|------|-------|----|----|---|------------------|
|    |    | Rese | erved |    |    |   | t Address<br>per |
| R0 | R0 | R0   | R0    | R0 | R0 | 0 | 0                |

0

0

0

| Row Start                                                   | Address Lo                                                                           | ower [RSAL :                                                                                  | : 09h : 02h]                                                                           |                                          |                              |                                              |                            |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------|------------------------------|----------------------------------------------|----------------------------|
| 7                                                           | 6                                                                                    | 5                                                                                             | 4                                                                                      | 3                                        | 2                            | 1                                            | 0                          |
|                                                             |                                                                                      |                                                                                               | Row Start Ac                                                                           | dress Lower                              | •                            |                                              |                            |
| 0                                                           | 0                                                                                    | 0                                                                                             | 0                                                                                      | 0                                        | 0                            | 1                                            | 0                          |
| Row Start                                                   | Address regi                                                                         | ster defines t                                                                                | he row start a                                                                         | ddress of im                             | age read-out                 | operation.                                   | •                          |
|                                                             |                                                                                      |                                                                                               |                                                                                        |                                          |                              |                                              |                            |
|                                                             |                                                                                      |                                                                                               |                                                                                        |                                          |                              |                                              |                            |
| Column S                                                    | tart Addres                                                                          | s Upper [CS/                                                                                  | AU : 0ah : 00I                                                                         | hl                                       |                              |                                              |                            |
| 7                                                           | 6                                                                                    | 5                                                                                             | 4                                                                                      | 3                                        | 2                            | 1                                            | 0                          |
|                                                             |                                                                                      | Reserved                                                                                      |                                                                                        |                                          | Column                       | Start Addres                                 | ss Upper                   |
| R0                                                          | R0                                                                                   | R0                                                                                            | R0                                                                                     | R0                                       | 0                            | 0                                            | 0                          |
| -                                                           | _                                                                                    | _                                                                                             | _                                                                                      |                                          | _                            | _                                            | _                          |
|                                                             |                                                                                      |                                                                                               |                                                                                        |                                          |                              |                                              |                            |
| Column S                                                    |                                                                                      |                                                                                               |                                                                                        | <b>k</b> 1                               |                              |                                              |                            |
|                                                             |                                                                                      | _                                                                                             | AL : 0bh : 02                                                                          | _                                        | 2                            | 1                                            | 0                          |
| 7                                                           | 6                                                                                    | 5                                                                                             | Zolumn Start /                                                                         | 3<br>Address Low                         |                              | 1                                            | 0                          |
|                                                             |                                                                                      |                                                                                               | - <b>-</b>                                                                             |                                          | 1                            | 1                                            | 0                          |
| 0                                                           | 0                                                                                    | 0                                                                                             | 0                                                                                      | 0                                        | 0                            | 1                                            | 0                          |
| Column St                                                   | art Address                                                                          | register defin                                                                                | es the column                                                                          | start addres                             | s of image re                | ead-out operation                            | ation.                     |
|                                                             |                                                                                      |                                                                                               |                                                                                        |                                          |                              |                                              |                            |
|                                                             |                                                                                      |                                                                                               |                                                                                        |                                          |                              |                                              |                            |
| Window H                                                    | leight Uppe                                                                          | r [WIHU : Ocl                                                                                 | h : 03h]                                                                               |                                          |                              |                                              |                            |
| Window H                                                    | leight Uppe<br>6                                                                     | r [WIHU : 0cl<br>5                                                                            | h : <b>03h]</b><br>4                                                                   | 3                                        | 2                            | 1                                            | 0                          |
|                                                             |                                                                                      | 5                                                                                             | _                                                                                      | 3                                        | 2                            | 1<br>Window He                               |                            |
|                                                             |                                                                                      | 5                                                                                             | 4                                                                                      | 3<br>R0                                  | 2<br>R0                      | -                                            | -                          |
| 7                                                           | 6                                                                                    | 5<br>Res                                                                                      | 4<br>erved                                                                             |                                          |                              | Window He                                    | eight Uppe                 |
| 7                                                           | 6                                                                                    | 5<br>Res                                                                                      | 4<br>erved                                                                             |                                          |                              | Window He                                    | eight Uppe                 |
| 7<br>R0                                                     | 6<br>R0                                                                              | 5<br>Res<br>R0                                                                                | 4<br>eerved<br>R0                                                                      |                                          |                              | Window He                                    | eight Uppe                 |
| 7<br>R0<br>Window H                                         | 6<br>R0                                                                              | 5<br>Res<br>R0                                                                                | 4<br>eerved<br>R0                                                                      | R0                                       | R0                           | Window He                                    | eight Uppe                 |
| 7<br>R0                                                     | 6<br>R0                                                                              | 5<br>Res<br>R0                                                                                | 4<br>eerved<br>R0<br>h : c0h]<br>4                                                     | R0<br>3                                  |                              | Window He                                    | eight Uppe                 |
| 7<br>R0<br>Window H                                         | 6<br>R0<br>leight Lowe<br>6                                                          | 5<br>Res<br>R0<br>r [WIHL : 0dl                                                               | 4<br>eerved<br>R0<br>h : c0h]<br>4<br>Window He                                        | R0<br>3<br>eight Lower                   | R0<br>2                      | Window He                                    | eight Uppe                 |
| 7<br>R0<br>Window H<br>7<br>1                               | e<br>R0<br>leight Lowe<br>6                                                          | 5<br>Res<br>R0<br>r [WIHL : 0dl<br>5                                                          | 4<br>eerved<br>R0<br>h : c0h]<br>4<br>Window He<br>0                                   | R0<br>3<br>eight Lower<br>0              | R0<br>2<br>0                 | Window He                                    | eight Uppe                 |
| 7<br>R0<br>Window H<br>7<br>1                               | e<br>R0<br>leight Lowe<br>6                                                          | 5<br>Res<br>R0<br>r [WIHL : 0dl<br>5                                                          | 4<br>eerved<br>R0<br>h : c0h]<br>4<br>Window He                                        | R0<br>3<br>eight Lower<br>0              | R0<br>2<br>0                 | Window He                                    | eight Upper                |
| 7<br>R0<br>Window H<br>7<br>1                               | e<br>R0<br>leight Lowe<br>6                                                          | 5<br>Res<br>R0<br>r [WIHL : 0dl<br>5                                                          | 4<br>eerved<br>R0<br>h : c0h]<br>4<br>Window He<br>0                                   | R0<br>3<br>eight Lower<br>0              | R0<br>2<br>0                 | Window He                                    | eight Uppe                 |
| 7<br>R0<br>Window H<br>7<br>1<br>Window H                   | R0<br>R0<br>leight Lowe<br>6<br>1<br>eight registe                                   | 5<br>Res<br>R0<br>r [WIHL : 0dl<br>5<br>0<br>r defines the l                                  | 4<br>erved<br>R0<br>h : c0h]<br>4<br>Window He<br>0<br>height of image                 | R0<br>3<br>eight Lower<br>0              | R0<br>2<br>0                 | Window He                                    | eight Uppe                 |
| 7<br>R0<br>Window H<br>7<br>1<br>Window H                   | R0<br>R0<br>leight Lowe<br>6<br>1<br>eight registe                                   | 5<br>Res<br>R0<br>r [WIHL : 0dl<br>5                                                          | 4<br>erved<br>R0<br>h : c0h]<br>4<br>Window He<br>0<br>height of image                 | R0<br>3<br>eight Lower<br>0              | R0<br>2<br>0                 | Window He                                    | eight Uppe                 |
| 7<br>R0<br>Window H<br>7<br>1<br>Window H                   | R0<br>R0<br>leight Lowe<br>6<br>1<br>eight registe                                   | 5<br>Res<br>R0<br>r [WIHL : 0dl<br>5<br>0<br>r defines the l<br>[WIWU : 0et<br>5              | 4<br>erved<br>R0<br>h : c0h]<br>4<br>Window He<br>0<br>height of image                 | R0<br>3<br>eight Lower<br>0              | 2<br>0<br>-out.              | Window He                                    | eight Upper<br>1<br>0<br>0 |
| 7<br>R0<br>Window H<br>7<br>1<br>Window H<br>Window V       | 6<br>R0<br>leight Lowe<br>6<br>1<br>eight registe                                    | 5<br>Res<br>R0<br>r [WIHL : 0df<br>5<br>0<br>r defines the f                                  | 4<br>erved<br>R0<br>h : c0h]<br>4<br>Window He<br>0<br>height of imag                  | R0<br>eight Lower<br>0<br>ge to be read  | 2<br>0<br>-out.              | Window He                                    | eight Upper<br>1<br>0<br>0 |
| 7<br>R0<br>Window H<br>7<br>1<br>Window H<br>Window V       | 6<br>R0<br>leight Lowe<br>6<br>1<br>eight registe                                    | 5<br>Res<br>R0<br>r [WIHL : 0dl<br>5<br>0<br>r defines the l<br>[WIWU : 0et<br>5              | 4<br>erved<br>R0<br>h : c0h]<br>4<br>Window He<br>0<br>height of imag                  | R0<br>eight Lower<br>0<br>ge to be read  | 2<br>0<br>-out.              | Window He                                    | eight Upper<br>1<br>0<br>0 |
| 7<br>R0<br>Window H<br>7<br>Window H<br>Window V<br>7       | 6     R0     leight Lowe     6     1     eight register     Vidth Upper     6        | 5<br>Res<br>R0<br>r [WIHL : 0dl<br>5<br>r defines the l<br>[WIWU : 0er<br>5<br>Reserved       | 4<br>erved<br>R0<br>h : c0h]<br>4<br>Window He<br>0<br>height of imag<br>h : 05h]<br>4 | R0<br>Beight Lower<br>0<br>ge to be read | 2<br>0<br>-out.<br>2<br>Wind | Window He<br>1<br>1<br>0<br>1<br>dow Width U | eight Upper                |
| 7<br>R0<br>Window H<br>7<br>Window H<br>Window V<br>7       | 6     R0     leight Lowe     6     1     eight register     Vidth Upper     6        | 5<br>Res<br>R0<br>r [WIHL : 0dl<br>5<br>r defines the l<br>[WIWU : 0er<br>5<br>Reserved       | 4<br>erved<br>R0<br>h : c0h]<br>4<br>Window He<br>0<br>height of imag<br>h : 05h]<br>4 | R0<br>Beight Lower<br>0<br>ge to be read | 2<br>0<br>-out.<br>2<br>Wind | Window He<br>1<br>1<br>0<br>1<br>dow Width U | eight Upper                |
| 7<br>R0<br>Window H<br>7<br>Window H<br>Window V<br>7<br>R0 | 6     R0     leight Lowe     6     1     eight register     Vidth Upper     6     R0 | 5<br>Res<br>R0<br>r [WIHL : 0df<br>5<br>r defines the f<br>[WIWU : 0ef<br>5<br>Reserved<br>R0 | 4 eerved R0 h : c0h] 4 Window He 0 height of imag n : 05h] 4 R0                        | R0<br>Beight Lower<br>0<br>ge to be read | 2<br>0<br>-out.<br>2<br>Wind | Window He<br>1<br>1<br>0<br>1<br>dow Width U | eight Upper                |
| 7<br>R0<br>Window H<br>7<br>Window H<br>Window V<br>7<br>R0 | 6     R0     leight Lowe     6     1     eight register     Vidth Upper     6     R0 | 5<br>Res<br>R0<br>r [WIHL : 0dl<br>5<br>r defines the l<br>[WIWU : 0er<br>5<br>Reserved       | 4 eerved R0 h : c0h] 4 Window He 0 height of imag n : 05h] 4 R0                        | R0<br>Beight Lower<br>0<br>ge to be read | 2<br>0<br>-out.<br>2<br>Wind | Window He<br>1<br>1<br>0<br>1<br>dow Width U | eight Upper                |

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

0

0

- 26 -2005 MagnaChip Semiconductor Ltd.

0

0

0

#### Window Width Address register defines the width of image to be read-out.

#### Horizontal Blank Time Upper [HBLU : 10h : 00h]

| 7 6 5 4 3 2 1 0             |  |  |  |  |  |  |  |  |  |
|-----------------------------|--|--|--|--|--|--|--|--|--|
| Horizontal Blank Time Upper |  |  |  |  |  |  |  |  |  |
| 0 0 0 0 0 0 0 0             |  |  |  |  |  |  |  |  |  |

#### Horizontal Blank Time Lower [HBLL : 11h : d0h]

| 7 6 5 4 3 2 1 0             |  |  |  |  |  |  |  |  |  |
|-----------------------------|--|--|--|--|--|--|--|--|--|
| Horizontal Blank Time Lower |  |  |  |  |  |  |  |  |  |
| 1 1 0 1 0 0 0               |  |  |  |  |  |  |  |  |  |

HBLANK Time register defines data blank time between current line and next line by using Sensor Clock Period unit, and should be larger than 208(d0h).

#### Vertical Blank Time Upper [VBLU : 12h : 00h]

| <u>7 6 5 4 3 2 1 0</u> |                           |  |  |  |  |  |  |  |  |
|------------------------|---------------------------|--|--|--|--|--|--|--|--|
|                        | Vertical Blank Time Upper |  |  |  |  |  |  |  |  |
| 0 0 0 0 0 0 0 0        |                           |  |  |  |  |  |  |  |  |

#### Vertical Blank Time Lower [VBLL : 13h : 08h]

| 7 6 5 4 3 2 1 0           |  |  |  |  |  |  |  |  |  |
|---------------------------|--|--|--|--|--|--|--|--|--|
| Vertical Blank Time Lower |  |  |  |  |  |  |  |  |  |
| 0 0 0 0 1 0 0 0           |  |  |  |  |  |  |  |  |  |
|                           |  |  |  |  |  |  |  |  |  |

VBLANK Time register defines active high duration of VSYNC output. Active high VSYNC indicates frame boundary between continuous frames.

#### Red Color Gain [RCG : 14h : 15h]

| 7        | 6             | 5                  | 4 | 3 | 2 | 1 | 0 |  |  |  |
|----------|---------------|--------------------|---|---|---|---|---|--|--|--|
| Reserved |               | Red Amplifier Gain |   |   |   |   |   |  |  |  |
| 0        | 0 0 1 0 1 0 1 |                    |   |   |   |   |   |  |  |  |

#### Green Color Gain [GCG : 15h :15h]

| 7        | 6 5 4 3 2 1 0 |                      |  |  |  |  |  |  |  |  |
|----------|---------------|----------------------|--|--|--|--|--|--|--|--|
| Reserved |               | Green Amplifier Gain |  |  |  |  |  |  |  |  |
| 0        | 0 0 1 0 1 0 1 |                      |  |  |  |  |  |  |  |  |

#### Blue Color Gain [BCG : 16h :15h]

| 7 6 5 4 3 2 1 0 |
|-----------------|
|-----------------|

| Reserved | Blue Amplifier Gain |   |   |   |   |   |   |  |
|----------|---------------------|---|---|---|---|---|---|--|
| 0        | 0                   | 0 | 1 | 0 | 1 | 0 | 1 |  |

There are three color gain registers for R, G, and B pixels, respectively. Programmable range is from  $0.5X \sim 3.5X$ . Effective Gain = 0.5 + B < 6:0 > /42.4. These registers may be used for white balance and color effect with independent R,G,and B color control. Recommend gain is 1.0X (15h).

#### Amp Gain for Pixel Output [PGAVAL : 17h : 08h]

| 7               | 7 6 5 4 3 2 1 0                                                                                      |  |  |  |  |  |  |  |  |  |
|-----------------|------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                 | Amp Gain                                                                                             |  |  |  |  |  |  |  |  |  |
| 0 0 0 0 1 0 0 0 |                                                                                                      |  |  |  |  |  |  |  |  |  |
| A O             | Area Opin is some an arise for D. O. D. shown all and used for suits surround control. Dramon making |  |  |  |  |  |  |  |  |  |

Amp Gain is common gain for R, G, B channel and used for auto exposure control. Programmable range is from  $0.5X \sim 16.5X$ . Default gain is 1.0X. Gain = 0.5 + B < 7:0 > /16

#### Amp Gain Minimum Value [PGAMIN : 18h : 00h]

| 7 6 5 4 3 2 1 0 |                  |  |  |  |  |  |  |  |  |  |
|-----------------|------------------|--|--|--|--|--|--|--|--|--|
|                 | Amp Gain Minimum |  |  |  |  |  |  |  |  |  |
| 0 0 0 0 0 0 0 0 |                  |  |  |  |  |  |  |  |  |  |

Amp Gain Minimum Value is minimum value of amplifier gain when sensor adjusts amplifier gain for auto exposure control. Programmable range is same as Amp Gain. Default value is 0.5X.

#### Amp Gain Maximum Value [PGAMAX : 19h : ffh]

| 7 6 5 4 3 2 1 0  |  |  |  |  |  |  |  |  |  |
|------------------|--|--|--|--|--|--|--|--|--|
| Amp Gain Maximum |  |  |  |  |  |  |  |  |  |
| 1 1 1 1 1 1 1 1  |  |  |  |  |  |  |  |  |  |

Amp Gain Maximum Value is maximum value of amplifier gain when sensor adjusts amplifier gain for auto exposure control. Programmable range is same as Amp Gain. Default value is 16.5X.

#### Amp Gain Normal Value [PGANOM : 1ah : 08h]

| 7 6 5 4 3 2 1 |                 |  |  |  |  |  |  |  |  |  |
|---------------|-----------------|--|--|--|--|--|--|--|--|--|
|               | Amp Gain Normal |  |  |  |  |  |  |  |  |  |
|               | 0 0 0 0 1 0 0 0 |  |  |  |  |  |  |  |  |  |

Amp Gain Normal Value is reference value of amp gain when sensor adjusts amp gain for auto exposure control. First, sensor controls integration time before adjusting amp gain for auto exposure control. After integration time is changed to the minimum or maximum value, sensor adjusts amp gain from this register value. Refer to figure of AE mode2 register(71H). Programmable range is same as Amp Gain. Default value is 1.0X.

#### Reset Level Clamp [RCLMP : 1ch : 17h]

| 7 | 6        | 5 | 4 | 3 | 2                 | 1 | 0 |  |  |
|---|----------|---|---|---|-------------------|---|---|--|--|
|   | Reserved |   |   |   | Reset Level Clamp |   |   |  |  |
| 0 | 0        | 0 | 1 | 0 | 1                 | 1 | 1 |  |  |

Because extremely bright image like sun affects reset data voltage of pixel to lower, bright image is captured as black image in image sensor regardless of correlated double sampling. To solve this extraordinary phenomenon, we adopt the method to clamp reset data voltage. Reset Level Clamp controls the reset data voltage to prevent inversion of extremely bright image. The larger register value clamps the reset data level at highest voltage level. Default value is 7 to clamp the reset data level at appropriate voltage level.

#### Pixel Bias [PXLBS : 1dh : 11h]

| 7        | 6 | 5          | 4 | 3       | 2          | 1 | 0 |  |
|----------|---|------------|---|---------|------------|---|---|--|
| Reserved |   | Pixel Bias |   | Reserve | Shift Bias |   |   |  |
|          |   |            |   | d       |            |   |   |  |
| 0        | 0 | 0          | 1 | 0       | 0          | 0 | 1 |  |

Pixel Bias and Shift Bias controls the amount of current in pixel bias circuit to operate Pixel effectively.

#### Programmable Amplifier Bias [PGABS : 1eh : 77h]

| 7 | 6        | 5 | 4 | 3 | 2        | 1 | 0 |  |  |
|---|----------|---|---|---|----------|---|---|--|--|
|   | PGA Bias |   |   |   | CDS Bias |   |   |  |  |
| 0 | 1        | 1 | 1 | 0 | 1        | 1 | 1 |  |  |

PGA Bias and CDS Bias control the amount of current in PGA and CDS bias circuit to operate PGA and CDS effectively.

#### ADC Bias Control [ADCBS : 1fh : 20h]

| 7        | 6        | 5 | 4 | 3        | 2 | 1 | 0 |  |
|----------|----------|---|---|----------|---|---|---|--|
| Reserved | ADC Bias |   |   | Reserved |   |   |   |  |
| 0        | 0        | 1 | 0 | 0        | 0 | 0 | 0 |  |
|          |          |   |   |          |   |   |   |  |

ADC Bias controls the amount of current in ADC bias circuit to operate ADC effectively.

#### Auto black level compensation

Each sensor has little different photo-diode characteristics so that the sensor provides internal adjustment registers that calibrates internal sensing circuit in order to get optimal performance. Sensor characteristics adjustment registers are as below.

#### ADC Initial Offset Value for Optical Black Red [OREDI : 21h : 7fh]

| 7                 | 6                      | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|-------------------|------------------------|---|---|---|---|---|---|--|--|--|
|                   | Red Pixel Black Offset |   |   |   |   |   |   |  |  |  |
| 0 1 1 1 1 1 1 1 1 |                        |   |   |   |   |   |   |  |  |  |

#### ADC Initial Offset Value for Optical Black Green [OGRNI : 22h : 7fh]

| 7               | 6                        | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|-----------------|--------------------------|---|---|---|---|---|---|--|--|--|
|                 | Green Pixel Black Offset |   |   |   |   |   |   |  |  |  |
| 0 1 1 1 1 1 1 1 |                          |   |   |   |   |   |   |  |  |  |

#### ADC Initial Offset Value for Optical Black Blue [OBLUI : 23h : 7fh]

| 7                                                                                               | 6                                                                                        | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---|---|---|---|---|---|--|--|--|--|
| Blue Pixel Black Offset                                                                         |                                                                                          |   |   |   |   |   |   |  |  |  |  |
| 0                                                                                               | 1                                                                                        | 1 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |
| These registers control the offset voltage of ADC that changes the black level value for light- |                                                                                          |   |   |   |   |   |   |  |  |  |  |
| shielded pix                                                                                    | shielded pixels, R,G,and B respectively. Register bit functions are composed as follows. |   |   |   |   |   |   |  |  |  |  |

| - sinelded pixels, N,O,and D respectively. Register bit functions are composed as follows. |                                                                              |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|--|--|
| Pixel Black Offset[7]                                                                      | The bit specifies whether to subtract or add the offset voltage in ADC input |  |  |  |  |  |  |
|                                                                                            | for light-shielded pixels.                                                   |  |  |  |  |  |  |
| Pixel Black                                                                                | This value specifies the amount of offset voltage for light-shielded pixels. |  |  |  |  |  |  |
| Offset[6:0]                                                                                |                                                                              |  |  |  |  |  |  |

#### Red Pixel Active Offset [OREDU : 24h : RO]

| 7                    | 6                       | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|----------------------|-------------------------|---|---|---|---|---|---|--|--|--|
|                      | Red Pixel Active Offset |   |   |   |   |   |   |  |  |  |
| RO RO RO RO RO RO RO |                         |   |   |   |   |   |   |  |  |  |

#### Green Pixel Active Offset [OGRNU : 25h : RO]

| 7                       | 6                         | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|-------------------------|---------------------------|---|---|---|---|---|---|--|--|--|
|                         | Green Pixel Active Offset |   |   |   |   |   |   |  |  |  |
| RO RO RO RO RO RO RO RO |                           |   |   |   |   |   |   |  |  |  |

#### Blue Pixel Active Offset [OBLUU : 26h : RO]

| 7                                                                                              | 6                        | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |  |
|------------------------------------------------------------------------------------------------|--------------------------|----|----|----|----|----|----|--|--|--|--|
|                                                                                                | Blue Pixel Active Offset |    |    |    |    |    |    |  |  |  |  |
| RO                                                                                             | RO                       | RO | RO | RO | RO | RO | RO |  |  |  |  |
| These registers represent black level average offset values for light-shielded pixels R,G,B or |                          |    |    |    |    |    |    |  |  |  |  |

updated active offset values for R,G,B, respectively. What values are monitored is decided by

SCTRC[5].

#### Black Level Threshold Value [BLKTH : 27h : ffh]

| 7 | 6                     | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|---|-----------------------|---|---|---|---|---|---|--|--|--|
|   | Black Level Threshold |   |   |   |   |   |   |  |  |  |
| 0 | 0                     | 1 | 1 | 1 | 1 | 1 | 1 |  |  |  |
|   |                       |   |   |   |   |   |   |  |  |  |

The register specifies the maximum value that determines whether light-shielded pixel output is valid. When light-shielded pixel output exceeds this limit, the pixel is not accounted for black level calculation.

#### ADC Compensation Offset Value for Optical Black Red [CREDI : 28h : 00h]

| 7 | 6                             | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|---|-------------------------------|---|---|---|---|---|---|--|--|--|
|   | Red Pixel Compensation Offset |   |   |   |   |   |   |  |  |  |
| 0 | 0 1 1 1 1 1 1 1               |   |   |   |   |   |   |  |  |  |

#### ADC Compensation Offset Value for Optical Black Green [CGRNI : 29h : 00h]

| 7               | 6                               | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|-----------------|---------------------------------|---|---|---|---|---|---|--|--|--|
|                 | Green Pixel Compensation Offset |   |   |   |   |   |   |  |  |  |
| 0 1 1 1 1 1 1 1 |                                 |   |   |   |   |   |   |  |  |  |

#### ADC Compensation Offset Value for Optical Black Blue [CBLUI : 2ah : 00h]

| 7                              | 6 | 5 | 4          | 3 | 2 | 1           | 0 |  |
|--------------------------------|---|---|------------|---|---|-------------|---|--|
| Blue Pixel Compensation Offset |   |   |            |   |   |             |   |  |
| 0 1 1 1 1 1 1 1 1              |   |   |            |   |   |             |   |  |
| These second                   |   |   | - (( ( ) ) |   |   | 1.111-1 (Co |   |  |

These registers manually control the offset value of ADC addition to ADC initial offsets. Register bit functions are composed as follows.

| Compensation Offset[7]   | The bit specifies whether to subtract or add the offset level. |
|--------------------------|----------------------------------------------------------------|
| Compensation Offset[6:0] | This value specifies the amount of offset level.               |

#### ISP Function Enable [ISPFUN : 30h : 02h]

| 7          | 6         | 5           | 4      | 3       | 2         | 1          | 0      |
|------------|-----------|-------------|--------|---------|-----------|------------|--------|
| Saturation | Color     | False Color | Smooth | Edge    | Edge      | Gamma      | Y+16   |
| Suppressi  | Suppressi | Suppressio  | Filter | Enhance | Algorithm |            |        |
| on Enable  | on Enable | n Enable    | Enable | Enable  | Select    | Correction | Enable |
| 0          | 0         | 0           | 0      | 0       | 0         | 1          | 0      |

#### Output Format [OUTFMT : 31h : 30h]

| 7        | 6                     | 5       | 4       | 3         | 2         | 1               | 0         |
|----------|-----------------------|---------|---------|-----------|-----------|-----------------|-----------|
| Reserved | Bayer 11bit<br>Output | U First | Y First | 16bit Bus | RGB 5:6:5 | 4:4:4<br>Format | 24bit RGB |
| 0        | 0                     | 1       | 1       | 0         | 0         | 0               | 0         |

|                    | If this bit is high, then 11bit Bayer raw values are continuously outputted    |
|--------------------|--------------------------------------------------------------------------------|
|                    | through output ports, Y0[7:0] = Bayer[10:3], Y1[2:0] = Bayer[2:0], else 8bit   |
| Bayer 11bit Output | Bayer raw only, Y[7:0] = Bayer[10:3]. And when this bit is high and 16bit bus  |
|                    | mode is enabled, Y[7:0] is outputted Bayer[10:3] and C[2:0] is outputted       |
|                    | Bayer[2:0]. For more information, refer page 62, Bayer data format.            |
| U First            | Cb(B) pixel in front of Cr(R) pixel in 16bit or 8bit video data output modes.  |
| Y First            | Y pixel in front of Cb and Cr pixels in 8bit video output mode. This option is |
| T FIISL            | meaningful only with YCbCr 4:2:2 8bit output mode.                             |
|                    | If this bit is high, output format is 16bit mode(YCbCr 4:2:2, YCbCr 4:4:4, or  |
| 16Bit Bus          | RGB 4:4:4), otherwise output format is 8bit mode(YCbCr 4:2:2, RGB 5:6:5,       |
|                    | Bayer).                                                                        |
|                    | Data format of RGB 5:6:5 mode is composed with {R[7:3]/G[7:5]} ,               |
| RGB 5:6:5          | {G[4:2]/B[7:3]} or {B[7:3]/G[7:5]}, {G[4:2]/R[7:3]}. OUTFMT[5](Cb/B First)     |
|                    | register affects above data form.                                              |
| 4.4.4 Format       | YCbCr 4:4:4 or RGB 4:4:4 24bit data for a pixel is produced with 16bit         |
| 4:4:4 Format       | output mode. (16bit Bus = '1')                                                 |
| 24Bit RGB          | R,G,B 4:4:4 24bit data for a pixel is produced with 16bit output mode.(16bit   |
|                    | Bus = '1' and 4:4:4 Format = '1')                                              |
|                    |                                                                                |

Default mode of Output Format is YCbCr 4:2:2 8bit bus mode.

#### Output Signal Inversion [OUTINV : 32h : 00h]

| 7        | 6     | 5      | 4 | 3       | 2         | 1         | 0         |
|----------|-------|--------|---|---------|-----------|-----------|-----------|
| Reserved |       |        |   | Clocked | VSYNC     | HSYNC     | VCLK      |
|          | IXESC | er veu |   | HSYNC   | inversion | inversion | inversion |
| 0        | 0     | 0      | 0 | 0       | 0         | 0         | 0         |

| Clocked HSYNC   | In HSYNC, VCLK is embedded, that is, HSYNC is toggling at VCLK rate |
|-----------------|---------------------------------------------------------------------|
|                 | during normal HSYNC time                                            |
| VSYNC inversion | VSYNC output polarity is inverted                                   |
| HSYNC inversion | HSYNC output polarity is inverted                                   |
| VCLK inversion  | VCLK output polarity is inverted                                    |

#### Dark Noise Cancellation [DNCMODE : 33h : 21h]

| 7  | 6           | 5            | 4  | 3      | 2                | 1 | 0    |
|----|-------------|--------------|----|--------|------------------|---|------|
| DI | NC Always P | erforming Zo | ne | DNC Th | Threshold DNC Mc |   | Mode |
| 0  | 0           | 1            | 0  | 0      | 0                | 0 | 1    |

| DNC Alwa   | ays  | In this zone, DNC function is always enabled regardless of DNC Mode.    |
|------------|------|-------------------------------------------------------------------------|
| Performing | Zone | In this zone, Dive function is always enabled regardless of Dive Mode.  |
| DNC Thres  | hold | Degree of the dark noise strength                                       |
| Dive Thies | noiu | (Tight)11 - 10 - 01 - 00(Loose)                                         |
|            | 00   | Always disabled                                                         |
|            |      | Conditional enabled                                                     |
| DNC Mode   | 01   | - Integration Time [73h-75h] > (DNC enable integration Time [35h-36h] * |
| DINC MODE  | 01   | 256)                                                                    |
|            |      | - Pre-Amp Gain [17h] > Dnc Gain [34h]                                   |
|            | 10   | Always enabled                                                          |

#### DNC Enable Gain [DNCGAIN : 34h : 3eh]

| 7 | 6               | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|---|-----------------|---|---|---|---|---|---|--|--|--|--|
|   | Dnc Enable Gain |   |   |   |   |   |   |  |  |  |  |
| 0 | 0 0 1 1 1 1 1 0 |   |   |   |   |   |   |  |  |  |  |

#### DNC Enable Int. Time High [DNCINTH : 35h : 13h]

| 7 | 6 | 5 | 4            | 3             | 2 | 1 | 0 |
|---|---|---|--------------|---------------|---|---|---|
|   |   | 0 | ONC Enable I | nt. Time High | l |   |   |
| 0 | 0 | 0 | 1            | 0             | 0 | 1 | 1 |

#### DNC Enable Int. Time Mid [DNCINTM : 36h : 12h]

| 7 | 6 | 5 | 4          | 3             | 2 | 1 | 0 |
|---|---|---|------------|---------------|---|---|---|
|   |   | [ | DNC Enable | Int. Time Min |   |   |   |
| 0 | 0 | 0 | 1          | 0             | 0 | 1 | 0 |

#### Color Correction Matrix Coefficient 11 [CRCM11 : 37h : 2fh]

| 7 | 6 | 5     | 4            | 3              | 2       | 1 | 0 |
|---|---|-------|--------------|----------------|---------|---|---|
|   |   | Color | Correction M | atrix Coeffici | ient 11 |   |   |
| 0 | 0 | 1     | 0            | 1              | 1       | 1 | 1 |

#### Color Correction Matrix Coefficient 12 [CRCM 12 : 38h : dbh]

| 7 | 6 | 5     | 4            | 3              | 2      | 1 | 0 |
|---|---|-------|--------------|----------------|--------|---|---|
|   |   | Color | Correction M | atrix Coeffici | ent 12 |   |   |
| 1 | 1 | 0     | 1            | 1              | 0      | 1 | 1 |

#### Color Correction Matrix Coefficient 13 [CRCM 13 : 39h : f6h]

| 7 | 6 | 5     | 4            | 3              | 2      | 1 | 0 |
|---|---|-------|--------------|----------------|--------|---|---|
|   |   | Color | Correction M | atrix Coeffici | ent 13 |   |   |
| 1 | 1 | 1     | 1            | 0              | 1      | 1 | 0 |

#### Color Correction Matrix Coefficient 21 [CRCM 21 : 3ah 0fh]

| 7 | 6 | 5     | 4            | 3              | 2      | 1 | 0 |
|---|---|-------|--------------|----------------|--------|---|---|
|   |   | Color | Correction M | atrix Coeffici | ent 21 |   |   |
| 0 | 0 | 0     | 0            | 1              | 1      | 1 | 1 |

#### Color Correction Matrix Coefficient 22 [CRCM 22 : 3bh : 28h]

| 7 | 6 | 5     | 4            | 3              | 2      | 1 | 0 |
|---|---|-------|--------------|----------------|--------|---|---|
|   |   | Color | Correction M | atrix Coeffici | ent 22 |   |   |
| 0 | 0 | 1     | 0            | 1              | 0      | 0 | 0 |

#### Color Correction Matrix Coefficient 23 [CRCM 23 : 3ch : 08h]

| 7 | 6 | 5     | 4            | 3              | 2      | 1 | 0 |
|---|---|-------|--------------|----------------|--------|---|---|
|   |   | Color | Correction M | atrix Coeffici | ent 23 |   |   |
| 0 | 0 | 0     | 0            | 1              | 0      | 0 | 0 |

#### Color Correction Matrix Coefficient 31 [CRCM 31 : 3dh : f5h]

| 7 | 6 | 5     | 4            | 3              | 2      | 1 | 0 |
|---|---|-------|--------------|----------------|--------|---|---|
|   |   | Color | Correction M | atrix Coeffici | ent 31 |   |   |
| 1 | 1 | 1     | 1            | 0              | 1      | 0 | 1 |

#### Color Correction Matrix Coefficient 32 [CRCM 32 : 3eh : c3h]

| 7 | 6 | 5     | 4            | 3              | 2      | 1 | 0 |
|---|---|-------|--------------|----------------|--------|---|---|
|   |   | Color | Correction M | atrix Coeffici | ent 32 |   |   |
| 1 | 1 | 0     | 0            | 0              | 0      | 1 | 1 |

#### Color Correction Matrix Coefficient 33 [CRCM 33 : 3fh : 3dh]

| 7 | 6 | 5     | 4            | 3               | 2      | 1 | 0 |
|---|---|-------|--------------|-----------------|--------|---|---|
|   |   | Color | Correction M | latrix Coeffici | ent 33 |   |   |
| 0 | 0 | 1     | 1            | 1               | 1      | 0 | 1 |

#### **Gamma Segment Start Points**

Gamma Segment Start Points specify the start points of nine line segments for piecewise gamma approximation. Current default gamma curve is much selected for optimum gray gradation.

| 7                                      | 6                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                    | 3                                               | 2                | 1           | 0           |
|----------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|------------------|-------------|-------------|
|                                        |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gamm                                                                 | a Point 0                                       |                  |             |             |
| 0                                      | 0                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                    | 0                                               | 0                | 0           | 0           |
| ommo Do                                | int 1 ICMA                                                                                                 | D1 . 41h . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 461                                                                  |                                                 |                  |             |             |
| 7 anna Po                              |                                                                                                            | 5 P1 : 41h ، 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                    | 3                                               | 2                | 1           | 0           |
| •                                      | 0                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                    | a Point 1                                       | _                | •           | •           |
| 0                                      | 0                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                    | 0                                               | 0                | 0           | 1           |
| -                                      |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |                                                 |                  |             |             |
| amma Po                                | int 2 [GMA                                                                                                 | P2:42h:08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8h]                                                                  |                                                 |                  |             |             |
| 7                                      | 6                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                    | 3                                               | 2                | 1           | 0           |
|                                        |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gamm                                                                 | a Point 2                                       |                  |             |             |
| 0                                      | 0                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                    | 1                                               | 0                | 0           | 0           |
|                                        |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gamm                                                                 | a Point 3                                       |                  |             |             |
| amma Po                                | oint 3 [GMA<br>6                                                                                           | <b>P3 : 43h 20l</b><br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>h]</b><br>4                                                       | 3                                               | 2                | 1           | 0           |
|                                        |                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gamm                                                                 | a Point 3                                       |                  |             |             |
| 0                                      | 0                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gamm<br>0                                                            | a Point 3<br>0                                  | 0                | 0           | 0           |
| 0                                      | 0                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                    | -                                               | 0                | 0           | 0           |
|                                        |                                                                                                            | 1<br>\P4 : 44h : 3a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                    | -                                               | 0                | 0           | 0           |
|                                        |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>ah]<br>4                                                        | 0                                               | 0                | 0           | 0           |
| amma Po                                | int 4 [GMA                                                                                                 | \P4:44h:3a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>ah]<br>4                                                        | 0                                               | I                |             | 1           |
| amma Po                                | int 4 [GMA                                                                                                 | ∖P4 : 44h : 3a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>ah]<br>4                                                        | 0                                               | I                |             | 1           |
| amma Po<br>7                           | oint 4 [GMA<br>6                                                                                           | \P4 : 44h : 3a<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>ah]<br>4<br>Gamm                                                | 0<br>3<br>a Point 4                             | 2                | 1           | 0           |
| amma Po<br>7<br>0                      | 6<br>0                                                                                                     | <b>\P4 : 44h : 3</b><br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>ah]<br>                                                         | 0<br>3<br>a Point 4                             | 2                | 1           | 0           |
| amma Po<br>7<br>0                      | 6<br>0                                                                                                     | \P4 : 44h : 3a<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>ah]<br>                                                         | 0<br>3<br>a Point 4                             | 2                | 1           | 0           |
| amma Po<br>7<br>0<br>amma Po           | oint 4 [GMA<br>6<br>0                                                                                      | ▲P4 : 44h : 3<br>5<br>1<br>▲P5 : 45h : 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>ah]<br>Gamm<br>1<br>8h]<br>4                                    | 0<br>3<br>a Point 4<br>1                        | 2                | 1           | 0           |
| amma Po<br>7<br>0<br>amma Po           | oint 4 [GMA<br>6<br>0                                                                                      | ▲P4 : 44h : 3<br>5<br>1<br>▲P5 : 45h : 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>ah]<br>Gamm<br>1<br>8h]<br>4                                    | 0<br>3<br>a Point 4<br>1<br>3                   | 2                | 1           | 0           |
| amma Po<br>7<br>0<br>amma Po<br>7      | oint 4 [GMA<br>6<br>0<br>0<br>0<br>0<br>0                                                                  | ▲P4:44h:3a<br>5<br>1<br>▲P5:45h:5a<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>ah]<br>4<br>Gamm<br>1<br>Bh]<br>4<br>Gamm                       | 0<br>3<br>a Point 4<br>1<br>3<br>a Point 5      | 2<br>0<br>2      | 1           | 0<br>0<br>0 |
| amma Po<br>7<br>0<br>amma Po<br>7      | oint 4 [GMA<br>6<br>0<br>0<br>0<br>0<br>0                                                                  | ▲P4:44h:3a<br>5<br>1<br>▲P5:45h:5a<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>ah]<br>4<br>Gamm<br>1<br>Bh]<br>4<br>Gamm                       | 0<br>3<br>a Point 4<br>1<br>3<br>a Point 5      | 2<br>0<br>2      | 1           | 0<br>0<br>0 |
| amma Po<br>7<br>0<br>amma Po<br>7<br>0 | oint 4 [GMA<br>6<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | ▲P4:44h:3a<br>5<br>1<br>▲P5:45h:5a<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>ah]<br>4<br>Gamm<br>1<br>8h]<br>4<br>Gamm<br>1                  | 0<br>3<br>a Point 4<br>1<br>3<br>a Point 5      | 2<br>0<br>2      | 1           | 0<br>0<br>0 |
| amma Po<br>7<br>0<br>amma Po<br>7<br>0 | oint 4 [GMA<br>6<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | AP4 : 44h : 3<br>5<br>1<br>AP5 : 45h : 5<br>5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>ah]<br>4<br>Gamm<br>1<br>8h]<br>4<br>Gamm<br>1                  | 0<br>3<br>a Point 4<br>1<br>3<br>a Point 5      | 2<br>0<br>2      | 1           | 0<br>0<br>0 |
| amma Po                                | oint 4 [GMA<br>6<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1 + 1 + 1 + 1 = 3<br>1 + 1 + 1 = 3 | 0<br>ah]<br>4<br>Gamm<br>1<br>8h]<br>4<br>Gamm<br>1<br>4<br>dh]<br>4 | 0<br>3<br>a Point 4<br>1<br>3<br>a Point 5<br>1 | 2<br>0<br>2<br>0 | 1<br>1<br>1 | 0<br>0<br>0 |

| 7                                                         | 6                                              | 5                                                                          | 4                                                                                      | 3                                                                                         | 2                     | 1                     | 0                |
|-----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------|-----------------------|------------------|
|                                                           |                                                |                                                                            | Gamma                                                                                  | a Point 7                                                                                 |                       |                       |                  |
| 0                                                         | 1                                              | 1                                                                          | 1                                                                                      | 1                                                                                         | 1                     | 0                     | 1                |
|                                                           |                                                | I                                                                          |                                                                                        | I                                                                                         |                       |                       |                  |
| amma Po                                                   | oint 8 [GMAF                                   | 98:48h:a                                                                   | eh]                                                                                    |                                                                                           |                       |                       |                  |
| 7                                                         | 6                                              | 5                                                                          | 4                                                                                      | 3                                                                                         | 2                     | 1                     | 0                |
|                                                           |                                                |                                                                            | Gamma                                                                                  | a Point 8                                                                                 |                       |                       |                  |
| 1                                                         | 0                                              | 1                                                                          | 0                                                                                      | 1                                                                                         | 1                     | 1                     | 0                |
| amma Po                                                   | oint 9 [GMAF<br>6                              | <b>?9 : 49h : d</b><br>5                                                   | <b>7h]</b><br>4                                                                        | 3                                                                                         | 2                     | 1                     | 0                |
|                                                           |                                                |                                                                            | Gamma                                                                                  | a Point 9                                                                                 |                       |                       |                  |
| 1                                                         | 1                                              | 0                                                                          | 1                                                                                      | 0                                                                                         | 1                     | 1                     | 1                |
| _                                                         |                                                | S0 4ah : 10                                                                |                                                                                        |                                                                                           |                       |                       |                  |
| 7                                                         | 6                                              | 5                                                                          | 4<br>Gamma                                                                             | 3<br>Slope 0                                                                              | 2                     | 1                     | 0                |
| 0                                                         | 0                                              | 5                                                                          | 4<br>Gamma                                                                             |                                                                                           | 2                     | 0                     | 0                |
| 0<br>amma Sl                                              | 0<br>lope 1 [GMA                               | 5<br>0<br>S1 : 4bh : 2                                                     | 4<br>Gamma<br>1<br>25h]                                                                | Slope 0<br>0                                                                              | 0                     | 0                     | 0                |
| 0                                                         | 0                                              | 5                                                                          | 4<br>Gamma<br>1<br>25h]<br>4                                                           | Slope 0<br>0                                                                              |                       |                       |                  |
| 0<br>iamma Sl<br>7                                        | 0<br>lope 1 [GMA:<br>6                         | 5<br>0<br><b>S1 : 4bh : 2</b><br>5                                         | 4<br>Gamma<br>1<br>25h]<br>4<br>Gamma                                                  | Slope 0<br>0<br>3<br>Slope 1                                                              | 0                     | 0                     | 0                |
| 0<br>Samma Si<br>7<br>0                                   | 0<br>lope 1 [GMA:<br>6<br>0                    | 5<br>0<br><b>S1 : 4bh : 2</b><br>5<br>1                                    | 4<br>Gamma<br>1<br>25h]<br>4<br>Gamma<br>0                                             | Slope 0<br>0                                                                              | 0                     | 0                     | 0                |
| 0<br>Samma SI<br>7<br>0                                   | 0<br>lope 1 [GMA:<br>6                         | 5<br>0<br><b>S1 : 4bh : 2</b><br>5<br>1                                    | 4<br>Gamma<br>1<br>25h]<br>4<br>Gamma<br>0                                             | Slope 0<br>0<br>3<br>Slope 1                                                              | 0                     | 0                     | 0                |
| 0<br>Samma SI<br>7<br>0<br>Samma SI                       | 0<br>lope 1 [GMA<br>6<br>0<br>lope 2 [GMA      | 5<br>0<br><b>S1 : 4bh : 2</b><br>5<br>1<br><b>S2 : 4ch : 6</b>             | 4<br>Gamma<br>25h]<br>4<br>Gamma<br>0<br>50h]<br>4                                     | Slope 0<br>0<br>3<br>Slope 1<br>0                                                         | 0<br>2<br>1           | 0                     | 0                |
| 0<br>Samma SI<br>7<br>0<br>Samma SI                       | 0<br>lope 1 [GMA<br>6<br>0<br>lope 2 [GMA      | 5<br>0<br><b>S1 : 4bh : 2</b><br>5<br>1<br><b>S2 : 4ch : 6</b>             | 4<br>Gamma<br>25h]<br>4<br>Gamma<br>0<br>50h]<br>4                                     | Slope 0<br>0<br>3<br>Slope 1<br>0<br>3                                                    | 0<br>2<br>1           | 0                     | 0                |
| 0<br>Samma SI<br>7<br>0<br>Samma SI<br>7<br>0             | 0<br>lope 1 [GMA<br>6<br>lope 2 [GMA<br>6<br>1 | 5<br>0<br><b>S1 : 4bh : 2</b><br>5<br><b>1</b><br><b>S2 : 4ch : 6</b><br>5 | 4<br>Gamma<br>25h]<br>4<br>Gamma<br>0<br>50h]<br>4<br>Gamma<br>0                       | Slope 0<br>0<br>3<br>Slope 1<br>0<br>3<br>Slope 2                                         | 0<br>2<br>1<br>2      | 0<br>1<br>0<br>1      | 0<br>0<br>1<br>0 |
| 0<br>Samma SI<br>7<br>0<br>Samma SI<br>7<br>0             | 0<br>lope 1 [GMA<br>6<br>0<br>lope 2 [GMA<br>6 | 5<br>0<br><b>S1 : 4bh : 2</b><br>5<br><b>1</b><br><b>S2 : 4ch : 6</b><br>5 | 4<br>Gamma<br>25h]<br>4<br>Gamma<br>0<br>50h]<br>4<br>Gamma<br>0                       | Slope 0<br>0<br>3<br>Slope 1<br>0<br>3<br>Slope 2                                         | 0<br>2<br>1<br>2      | 0<br>1<br>0<br>1      | 0<br>0<br>1<br>0 |
| 0<br>Samma Si<br>7<br>0<br>Samma Si<br>7<br>0<br>Samma Si | 0<br>lope 1 [GMA<br>6<br>lope 2 [GMA<br>6<br>1 | 5<br>0<br>S1 : 4bh : 2<br>5<br>1<br>S2 : 4ch : 6<br>5<br>1<br>S3 : 4dh : 3 | 4<br>Gamma<br>25h]<br>4<br>Gamma<br>0<br>50h]<br>4<br>Gamma<br>4<br>Gamma<br>94h]<br>4 | Slope 0         0         3         Slope 1         0         3         Slope 2         0 | 0<br>2<br>1<br>2<br>0 | 0<br>1<br>0<br>1<br>0 | 0<br>0<br>1<br>0 |

### Gamma Slope 4 [GMAS4 : 4eh : 1eh]

| 7               | 6             | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|-----------------|---------------|---|---|---|---|---|---|--|--|--|--|
|                 | Gamma Slope 4 |   |   |   |   |   |   |  |  |  |  |
| 0 0 0 1 1 1 1 0 |               |   |   |   |   |   |   |  |  |  |  |

### Gamma Slope 5 [GMAS5 : 4fh : 15h]

| 7 | 6               | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|---|-----------------|---|---|---|---|---|---|--|--|--|--|
|   | Gamma Slope 5   |   |   |   |   |   |   |  |  |  |  |
| 0 | 0 0 0 1 0 1 0 1 |   |   |   |   |   |   |  |  |  |  |

### Gamma Slope 6 [GMAS6 : 50h : 10h]

| 7             | 6             | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|---------------|---------------|---|---|---|---|---|---|--|--|--|
| Gamma Slope 6 |               |   |   |   |   |   |   |  |  |  |
| 0             | 0 0 0 1 0 0 0 |   |   |   |   |   |   |  |  |  |

### Gamma Slope 7 [GMAS7 : 51h : 0ch]

| 7             | 6               | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|---------------|-----------------|---|---|---|---|---|---|--|--|--|
| Gamma Slope 7 |                 |   |   |   |   |   |   |  |  |  |
| 0             | 0 0 0 0 1 1 0 0 |   |   |   |   |   |   |  |  |  |

### Gamma Slope 8 [GMAS8 : 52h : 0ah]

| 7 | 6               | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|---|-----------------|---|---|---|---|---|---|--|--|--|--|
|   | Gamma Slope 8   |   |   |   |   |   |   |  |  |  |  |
| 0 | 0 0 0 0 1 0 1 0 |   |   |   |   |   |   |  |  |  |  |

#### Gamma Slope 9 [GMAS9 : 53h : 0ah]

| 7             | 6               | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|---------------|-----------------|---|---|---|---|---|---|--|--|--|
| Gamma Slope 9 |                 |   |   |   |   |   |   |  |  |  |
| 0             | 0 0 0 0 1 0 1 0 |   |   |   |   |   |   |  |  |  |

### Inverse Color Space Conversion

Inverse color space conversion converts from YUV to RGB and default values support the CCIR-601 standard. This is activated only when RGB5:6:5 or RGB 4:4:4 formats are used. R = Y + A(Cr-128)

G = Y - B(Cr-128) - C(Cb-128)

B = Y + D(Cb-128)

- A : Inverse Color constant for R[54h]
- B : Inverse Color constant for G[55h]
- C : Inverse Color constant for G[56h]
- D : Inverse Color constant for B[57h]

### Inverse Color constant for R [RCRCONST : 54h : 57h]

| 7                            | 6               | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|------------------------------|-----------------|---|---|---|---|---|---|--|--|--|
| Inverse Color constant for R |                 |   |   |   |   |   |   |  |  |  |
| 0                            | 0 1 0 1 0 1 1 1 |   |   |   |   |   |   |  |  |  |

### Inverse Color constant for G [GCRCONST : 55h : d4h]

| 7 | 6                            | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|---|------------------------------|---|---|---|---|---|---|--|--|--|--|
|   | Inverse Color constant for G |   |   |   |   |   |   |  |  |  |  |
| 1 | 1 1 0 1 0 1 0 0              |   |   |   |   |   |   |  |  |  |  |

### Inverse Color constant for G [GCBCONST : 56h : ebh]

| 7                            | 6               | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|------------------------------|-----------------|---|---|---|---|---|---|--|--|--|
| Inverse Color constant for G |                 |   |   |   |   |   |   |  |  |  |
| 1                            | 1 1 1 0 1 0 1 1 |   |   |   |   |   |   |  |  |  |

### Inverse Color constant for B [BCBCONST : 57h : 6eh]

| 7 | 6                            | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|---|------------------------------|---|---|---|---|---|---|--|--|--|--|
|   | Inverse Color constant for B |   |   |   |   |   |   |  |  |  |  |
| 0 | 0 1 1 0 1 1 0                |   |   |   |   |   |   |  |  |  |  |

### **Image Enhancement**

User is able to control Hue, Saturation, Contrast, and Brightness registers.

### Hue value 1 [SINX : 58h : 00h]

| 7           | 6               | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|-------------|-----------------|---|---|---|---|---|---|--|--|--|
| Hue value 1 |                 |   |   |   |   |   |   |  |  |  |
| 0           | 0 0 0 0 0 0 0 0 |   |   |   |   |   |   |  |  |  |

### Hue value 2 [COSX : 59h : 80h]

| 7 | 6 | 5 | 4     | 3      | 2 | 1 | 0 |
|---|---|---|-------|--------|---|---|---|
|   |   |   | Hue v | alue 2 |   |   |   |

MagnaChip Confidential

|  | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|--|---|---|---|---|---|---|---|---|
|--|---|---|---|---|---|---|---|---|

### <Hue Register Setting Parameter>

\* SinX , CosX is multiplied by 128.

| Angle | SinX  | CosX  | Angle | SinX  | CosX  | Angle | SinX  | CosX  |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| (°)   | (hex) | (hex) | (°)   | (hex) | (hex) | (°)   | (hex) | (hex) |
| -30   | C0    | 6E    | -9    | EC    | 7E    | 12    | 1A    | 7D    |
| -29   | C2    | 6F    | -8    | EF    | 7E    | 13    | 1C    | 7C    |
| -28   | C4    | 71    | -7    | F1    | 7F    | 14    | 1E    | 7C    |
| -27   | C6    | 72    | -6    | F3    | 7F    | 15    | 21    | 7B    |
| -26   | C8    | 73    | -5    | F5    | 7F    | 16    | 23    | 7B    |
| -25   | CA    | 74    | -4    | F8    | 7F    | 17    | 25    | 7A    |
| -24   | CC    | 74    | -3    | FA    | 7F    | 18    | 27    | 79    |
| -23   | CE    | 75    | -2    | FC    | 7F    | 19    | 29    | 79    |
| -22   | D1    | 76    | -1    | FE    | 7F    | 20    | 2B    | 78    |
| -21   | D3    | 77    | 0     | 00    | 80    | 21    | 2D    | 77    |
| -20   | D5    | 78    | 1     | 02    | 7F    | 22    | 2F    | 76    |
| -19   | D7    | 79    | 2     | 04    | 7F    | 23    | 32    | 75    |
| -18   | D9    | 79    | 3     | 06    | 7F    | 24    | 34    | 74    |
| -17   | DB    | 7A    | 4     | 08    | 7F    | 25    | 36    | 74    |
| -16   | DD    | 7B    | 5     | 0B    | 7F    | 26    | 38    | 73    |
| -15   | DF    | 7B    | 6     | 0D    | 7F    | 27    | ЗA    | 72    |
| -14   | E2    | 7C    | 7     | 0F    | 7F    | 28    | 3C    | 71    |
| -13   | E4    | 7C    | 8     | 11    | 7E    | 29    | 3E    | 6F    |
| -12   | E6    | 7D    | 9     | 14    | 7E    | 30    | 40    | 6E    |
| -11   | E8    | 7D    | 10    | 16    | 7E    |       |       |       |
| -10   | EA    | 7E    | 11    | 18    | 7D    |       |       |       |

### Brightness value [BRIGHTNESS : 5bh : 00h]

| 7           | 6                | 5            | 4           | 3                      | 2 | 1 | 0 |  |  |  |
|-------------|------------------|--------------|-------------|------------------------|---|---|---|--|--|--|
|             | Brightness value |              |             |                        |   |   |   |  |  |  |
| 0           | 0                | 0            | 0           | 0                      | 0 | 0 | 0 |  |  |  |
| Drighterage | value reneral    | a frama 1074 | a 100/01a a | ( المصحف محمد ما الصحف |   |   | • |  |  |  |

Brightness value range is from -127 to +128(2's complement).

### Saturation value [SATURATION : 5ch : 80h]

| 7 | 6                | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|---|------------------|---|---|---|---|---|---|--|--|
|   | Saturation value |   |   |   |   |   |   |  |  |
| 1 | 1 0 0 0 0 0 0 0  |   |   |   |   |   |   |  |  |

Saturation value range is from 0.0x to 1.99x

### < Contrast & Saturation parameter >

\* Parameter is multiplied by 128.

| Number | Contrast &<br>Saturation (hex) | Number | Contrast &<br>Saturation (hex) |
|--------|--------------------------------|--------|--------------------------------|
| 0.1    | 0D                             | 1.1    | 8D                             |
| 0.2    | 1A                             | 1.2    | 9A                             |
| 0.3    | 26                             | 1.3    | A6                             |
| 0.4    | 33                             | 1.4    | B3                             |
| 0.5    | 40                             | 1.5    | C0                             |
| 0.6    | 4D                             | 1.6    | CD                             |
| 0.7    | 5A                             | 1.7    | DA                             |
| 0.8    | 66                             | 1.8    | E6                             |
| 0.9    | 73                             | 1.9    | F3                             |
| 1.0    | 80                             | 1.99   | FF                             |

### Edge Weight Control value [EGWTCON : 5dh : 00h]

| 7               | 6    | 5     | 4 | 3           | 2 | 1 | 0 |  |  |  |
|-----------------|------|-------|---|-------------|---|---|---|--|--|--|
|                 | Rese | erved |   | Edge Weight |   |   |   |  |  |  |
| 0               | 0    | 0     | 0 | 0           | 0 | 0 | 0 |  |  |  |
| E data data ind |      |       |   |             |   |   |   |  |  |  |

Edge weight control value range is from 0.5x to 8.0x.

### Edge Enhancement Vth Low [EDTHLO : 5eh : 10h]

| 7 | 6                        | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|---|--------------------------|---|---|---|---|---|---|--|--|
|   | Edge Enhancement Vth Low |   |   |   |   |   |   |  |  |
| 0 | 0                        | 0 | 1 | 0 | 0 | 0 | 0 |  |  |

### Suppression Pre Amp Gain Min [SUPGMIN : 60h : 24h]

| 7 | 6                            | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|---|------------------------------|---|---|---|---|---|---|--|--|--|
|   | Suppression Pre Amp Gain Min |   |   |   |   |   |   |  |  |  |
| 0 | 0 0 1 0 0 1 0 0              |   |   |   |   |   |   |  |  |  |

### Saturation Pre Amp Gain Min [SATGMIN : 61h : 24h]

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

MagnaChip• Confidential

|                                                                             |                                                                                   |                                                                                        | Saturation Pre                                                                                                      | Amp Gain                                                      |                                                                                        |                                 |                  |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------|------------------|
| 0                                                                           | 0                                                                                 | 1                                                                                      | 0                                                                                                                   | 0                                                             | 1                                                                                      | 0                               | 0                |
| dao Pro /                                                                   | Amp Gain M                                                                        |                                                                                        | 1IN : 62h : 24h                                                                                                     | .1                                                            |                                                                                        |                                 |                  |
| 7                                                                           | -inp Gain w<br>6                                                                  | 5                                                                                      | 4                                                                                                                   | <b>ן</b> י<br>3                                               | 2                                                                                      | 1                               | 0                |
| ,                                                                           | 0                                                                                 | 0                                                                                      | Edge Pre A                                                                                                          |                                                               |                                                                                        |                                 | 0                |
| 0                                                                           | 0                                                                                 | 1                                                                                      | 0                                                                                                                   | 0                                                             | 1 1                                                                                    | 0                               | 0                |
|                                                                             | 1                                                                                 |                                                                                        |                                                                                                                     | 1                                                             |                                                                                        |                                 |                  |
| i Edge Va                                                                   | alue [HIEDG                                                                       | SVAL : 63h :                                                                           | : ffh]                                                                                                              |                                                               |                                                                                        |                                 |                  |
| 7                                                                           | 6                                                                                 | 5                                                                                      | 4                                                                                                                   | 3                                                             | 2                                                                                      | 1                               | 0                |
|                                                                             | T                                                                                 | 1                                                                                      | Hi Edg                                                                                                              | e Value                                                       |                                                                                        |                                 |                  |
| 1                                                                           | 1                                                                                 | 1                                                                                      | 1                                                                                                                   | 1                                                             | 1                                                                                      | 1                               | 1                |
| 7                                                                           | 6                                                                                 | 5                                                                                      |                                                                                                                     | 3<br>or Th. High                                              | 2                                                                                      | 1                               | 0                |
|                                                                             |                                                                                   |                                                                                        |                                                                                                                     |                                                               | -                                                                                      |                                 | 0                |
| 0<br>alse Colo                                                              | 0<br>or Th. High                                                                  | 0<br>[FCORTHH                                                                          | 0<br>I : 65h : ffh]                                                                                                 | 0                                                             | 0                                                                                      | 0                               | 0                |
|                                                                             | 1                                                                                 |                                                                                        | l : 65h : ffh]<br>4                                                                                                 | 3                                                             | 2                                                                                      | 01                              | 0                |
| alse Colo                                                                   | or Th. High                                                                       | [FCORTHH                                                                               | l : 65h : ffh]<br>4                                                                                                 |                                                               |                                                                                        |                                 | 1                |
| alse Colo<br>7<br>1                                                         | or Th. High  <br>6<br>1                                                           | [FCORTHHI<br>5                                                                         | I : 65h : ffh]<br>4<br>False Colo<br>1<br>I : 65h : ffh]<br>4                                                       | 3<br>or Th. High                                              | 2                                                                                      | 1                               | 0                |
| alse Colo<br>7<br>1<br>alse Colo                                            | or Th. High  <br>6<br>1<br>or Th. High                                            | [FCORTHHI<br>5<br>1<br>[FCORTHHI                                                       | I : 65h : ffh]<br>4<br>False Colo<br>1<br>I : 65h : ffh]<br>4                                                       | 3<br>or Th. High<br>1<br>3                                    | 2                                                                                      | 1                               | 0                |
| alse Colo<br>7<br>1<br>alse Colo<br>7<br>1                                  | or Th. High  <br>6<br>1<br>or Th. High  <br>6                                     | [FCORTHHI<br>5<br>1<br>[FCORTHHI<br>5<br>1<br>1                                        | I : 65h : ffh]<br>4<br>False Colo<br>1<br>I : 65h : ffh]<br>4<br>False Colo<br>1                                    | 3<br>or Th. High<br>1<br>3<br>or Th. High                     | 2                                                                                      | 1                               | 0                |
| alse Colo<br>7<br>1<br>alse Colo<br>7<br>1<br>0ntrast [0<br>7               | or Th. High  <br>6<br>1<br>or Th. High  <br>6<br>1<br>CONTRAST<br>6               | [FCORTHHI<br>5<br>1<br>[FCORTHHI<br>5<br>1<br>1                                        | I : 65h : ffh]<br>4<br>False Colo<br>1<br>I : 65h : ffh]<br>4<br>False Colo<br>1<br>1                               | 3<br>or Th. High<br>1<br>3<br>or Th. High<br>1<br>3           | 2<br>1<br>2<br>2<br>1                                                                  | 1<br>1<br>1<br>1<br>1           | 0<br>1<br>0<br>1 |
| alse Colo<br>7<br>1<br>alse Colo<br>7<br>1<br>0ntrast [0<br>7<br>Rese       | or Th. High  <br>6<br>1<br>or Th. High  <br>6<br>1<br>CONTRAST<br>6<br>erved      | [FCORTHHI<br>5<br>1<br>[FCORTHHI<br>5<br>1<br>1<br>: 66h : 00h<br>5<br>Contra          | I : 65h : ffh]<br>4<br>False Colo<br>1<br>I : 65h : ffh]<br>4<br>False Colo<br>1<br>1<br>4<br>ast Control           | 3<br>or Th. High<br>1<br>3<br>or Th. High<br>1<br>3           | 2<br>1<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>0<br>0<br>1<br>2 | 1<br>1<br>1<br>1<br>0 Value Sel | 0<br>1<br>0<br>1 |
| alse Colo<br>7<br>1<br>alse Colo<br>7<br>1<br>0ntrast [0<br>7               | or Th. High  <br>6<br>1<br>or Th. High  <br>6<br>1<br>CONTRAST<br>6               | [FCORTHHI<br>5<br>1<br>[FCORTHHI<br>5<br>1<br>1                                        | I : 65h : ffh]<br>4<br>False Colo<br>1<br>I : 65h : ffh]<br>4<br>False Colo<br>1<br>1                               | 3<br>or Th. High<br>1<br>3<br>or Th. High<br>1<br>3           | 2<br>1<br>2<br>2<br>1                                                                  | 1<br>1<br>1<br>1<br>1           | 0<br>1<br>0<br>1 |
| alse Colo<br>7<br>1<br>alse Colo<br>7<br>1<br>0ntrast [0<br>7<br>Rese       | or Th. High  <br>6<br>1<br>or Th. High  <br>6<br>1<br>CONTRAST<br>6<br>erved      | [FCORTHHI<br>5<br>1<br>[FCORTHHI<br>5<br>[FCORTHHI<br>5<br>1<br>1<br>5<br>(Contra<br>0 | I : 65h : ffh]<br>4<br>False Colo<br>1<br>I : 65h : ffh]<br>4<br>False Colo<br>1<br>4<br>False Colo<br>0            | 3<br>or Th. High<br>1<br>3<br>or Th. High<br>1<br>3           | 2<br>1<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>0<br>0<br>1<br>2 | 1<br>1<br>1<br>1<br>0 Value Sel | 0<br>1<br>0<br>1 |
| alse Colo<br>7<br>1<br>alse Colo<br>7<br>1<br>contrast [0<br>7<br>Rese<br>0 | or Th. High  <br>6<br>1<br>or Th. High  <br>6<br>1<br>CONTRAST<br>6<br>erved<br>0 | [FCORTHHI<br>5<br>1<br>[FCORTHHI<br>5<br>1<br>1<br>: 66h : 00h<br>5<br>Contra          | I : 65h : ffh]<br>4<br>False Colo<br>1<br>I : 65h : ffh]<br>4<br>False Colo<br>1<br>1<br>4<br>ast Control           | 3<br>or Th. High<br>1<br>3<br>or Th. High<br>1<br>3           | 2<br>1<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>0<br>0<br>1<br>2 | 1<br>1<br>1<br>1<br>0 Value Sel | 0<br>1<br>0<br>1 |
| alse Colo<br>7<br>1<br>alse Colo<br>7<br>1<br>contrast [0<br>7<br>Rese<br>0 | or Th. High  <br>6<br>1<br>or Th. High  <br>6<br>1<br>CONTRAST<br>6<br>erved      | [FCORTHHI<br>5<br>1<br>[FCORTHHI<br>5<br>[FCORTHHI<br>5<br>1<br>1<br>5<br>(Contra<br>0 | I : 65h : ffh]<br>4<br>False Colo<br>1<br>I : 65h : ffh]<br>4<br>False Colo<br>1<br>A<br>False Colo<br>0<br>Disable | 3<br>or Th. High<br>1<br>3<br>or Th. High<br>1<br>3<br>C<br>0 | 2<br>1<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>0<br>0<br>1<br>2 | 1<br>1<br>1<br>1<br>0 Value Sel | 0<br>1<br>0<br>1 |

| Contrast Control Value | 0000 ~ 0100 | Selects the contrast X-point values. (Xpt1 ~ Xpt4) |
|------------------------|-------------|----------------------------------------------------|
| Select                 | 0101 ~ 1001 | Selects the contrast slope values. (Slp1 ~ Slp5)   |

### Contrast Control Value [CONTVALUE : 67h : 00h]

| 7 | 6                      | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|---|------------------------|---|---|---|---|---|---|--|--|
|   | Contrast Control Value |   |   |   |   |   |   |  |  |
| 0 | 0                      | 0 | 0 | 0 | 0 | 0 | 0 |  |  |

#### **Special Image Functions**

Available functions are mono tone, gray scale, sepia, and negative. Sepia Cb/Cr Value bits and special image functions threshold value register can be used when you want to change Cb and Cr sense of image for sepia mode. Mono value bit and special image functions threshold value register are can be used when you want to change a threshold value determining white and black level at mono tone.

### Special Image Functions mode [SPESEL : 68h : 00h]

| 7 6               |   | 5             | 4        | 3 | 2             | 1 | 0 |
|-------------------|---|---------------|----------|---|---------------|---|---|
| Sepia Cb/Cr Value |   | Mono<br>Value | Reserved |   | Function Mode |   |   |
| 0                 | 0 | 0             | 0        | 0 | 0             | 0 | 0 |

|                    | 000                                                                | Normal image (default)                           |  |  |  |
|--------------------|--------------------------------------------------------------------|--------------------------------------------------|--|--|--|
|                    | 001                                                                | Gray scale image                                 |  |  |  |
| Eurotian Made      | 010                                                                | Sepia tone image                                 |  |  |  |
| Function Mode      | 011                                                                | Negative image                                   |  |  |  |
|                    | 100                                                                | Mono tone image                                  |  |  |  |
|                    | 110                                                                | Auto level image                                 |  |  |  |
|                    | If function mode is n                                              | nono tone image and this pin is high, using this |  |  |  |
| Mono Value         | register can change a threshold value determining white and black  |                                                  |  |  |  |
|                    | level. After set SPESEL to 24h, set SPETHVALUE register to a value |                                                  |  |  |  |
|                    | which you want.                                                    |                                                  |  |  |  |
|                    | If you want other image tone, but not sepia, using this bits and   |                                                  |  |  |  |
|                    | SPETHVALUE regist                                                  | er is possible. First, set SPESEL to 42h and set |  |  |  |
|                    | SPETHVALUE regist                                                  | ter to a Cb value which you want. Final, set     |  |  |  |
| Caria Ch/Crt Value | SPESEL to 82h and                                                  | set SPETHVALUE register to a Cr value which      |  |  |  |
| Sepia Cb/Cr Value  | you want.                                                          |                                                  |  |  |  |
|                    | 00                                                                 | Cb and Cr are set to default value.              |  |  |  |
|                    | 01                                                                 | Cb value is set to SPETHVALUE register.          |  |  |  |
|                    | 10                                                                 | Cr value is set to SPETHVALUE register.          |  |  |  |

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

#### Special Image Functions Threshold value [SPETHVALUE : 69h : 00h]

| 7 | 7 6 5 4 3 2 1 0                         |   |   |   |   |   |   |  |  |  |
|---|-----------------------------------------|---|---|---|---|---|---|--|--|--|
|   | Special Image Functions Threshold Value |   |   |   |   |   |   |  |  |  |
| 0 | 0                                       | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |

### Auto Focus Value Control [AF\_CTRL : 6ah : a6h]

| 7               | 6            | 5 | 4 | 3    | 2    | 1                 | 0                        |
|-----------------|--------------|---|---|------|------|-------------------|--------------------------|
| State<br>Select | Window Ratio |   |   | Rese | rved | Edge<br>Selection | Focus<br>Value<br>Enable |
| 1               | 0            | 1 | 0 | 0    | 1    | 1                 | 0                        |

### Window Weight Control for AF [AF\_WinWgt : 6bh : cdh]

| 7 | 7 6 5 4 3 2 1 0       |  |  |  |  |  |  |  |  |  |
|---|-----------------------|--|--|--|--|--|--|--|--|--|
|   | Window Weight Control |  |  |  |  |  |  |  |  |  |
| 1 | 1 1 0 0 1 1 0 1       |  |  |  |  |  |  |  |  |  |

### Edge Threshold for AF [AF\_EdgTh : 6ch : 00h]

| 7               | 7 6 5 4 3 2 1 0 |  |  |  |  |  |  |  |  |  |
|-----------------|-----------------|--|--|--|--|--|--|--|--|--|
|                 | Edge Threshold  |  |  |  |  |  |  |  |  |  |
| 0 0 0 0 0 0 0 0 |                 |  |  |  |  |  |  |  |  |  |

#### State-decision Threshold for AF [AF\_StateThH : 6dh : 00h]

| 7                             | 7 6 5 4 3 2 1 0 |  |  |  |  |  |  |  |  |  |
|-------------------------------|-----------------|--|--|--|--|--|--|--|--|--|
| State-decision Threshold High |                 |  |  |  |  |  |  |  |  |  |
| 0                             | 0 0 0 0 0 0 0 0 |  |  |  |  |  |  |  |  |  |

#### State-decision Threshold for AF [AF\_StateThL : 6eh : 0ah]

| 7                            | 7 6 5 4 3 2 1 0 |  |  |  |  |  |  |  |  |  |
|------------------------------|-----------------|--|--|--|--|--|--|--|--|--|
| State-decision Threshold Low |                 |  |  |  |  |  |  |  |  |  |
| 0                            | 0 0 0 0 1 0 1 0 |  |  |  |  |  |  |  |  |  |

### Current State for AF [AF\_State : b0h : ROh]

| 7 | 6 | 5 | 4      | 3        | 2 | 1 | 0 |
|---|---|---|--------|----------|---|---|---|
|   |   |   | Curren | nt State |   |   |   |

MagnaChip Confidential

| RO RO RO RO RO RO RO RO |
|-------------------------|
|-------------------------|

| Focal Value 4th Byte for AF [AF_StateThL : b1h : ROh] |    |    |           |             |    |    |    |  |  |  |  |
|-------------------------------------------------------|----|----|-----------|-------------|----|----|----|--|--|--|--|
| 7                                                     | 6  | 5  | 4         | 3           | 2  | 1  | 0  |  |  |  |  |
|                                                       |    |    | Focal Val | ue 4th Byte |    |    |    |  |  |  |  |
| RO                                                    | RO | RO | RO        | RO          | RO | RO | RO |  |  |  |  |

### Focal Value 3rd Byte for AF [AF\_StateThL : b2h : ROh]

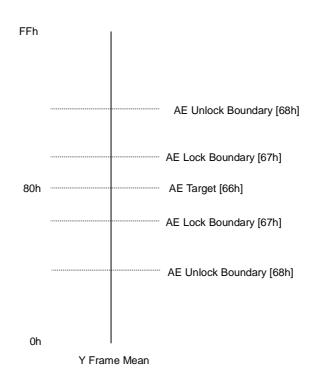
| 7  | 7 6 5 4 3 2 1 0      |  |  |  |  |  |  |  |  |  |
|----|----------------------|--|--|--|--|--|--|--|--|--|
|    | Focal Value 3rd Byte |  |  |  |  |  |  |  |  |  |
| RO | RO RO RO RO RO RO RO |  |  |  |  |  |  |  |  |  |

### Focal Value 2nd Byte for AF [AF\_StateThL : b3h : ROh]

| 7                    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|----------------------|----|----|----|----|----|----|----|
| Focal Value 2nd Byte |    |    |    |    |    |    |    |
| RO                   | RO | RO | RO | RO | RO | RO | RO |

### Focal Value 1st Byte for AF [AF\_StateThL : b4h : RO]

| 7                    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|----------------------|----|----|----|----|----|----|----|
| Focal Value 1st Byte |    |    |    |    |    |    |    |
| RO                   | RO | RO | RO | RO | RO | RO | RO |


### Adaptive Noise Filter Control [NFILTERCON : b5h : 04h]

| 7      | 6    | 5                         | 4 | 3                            | 2 | 1 | 0        |
|--------|------|---------------------------|---|------------------------------|---|---|----------|
| Enable | Manu | Manual Filter Coefficient |   | Automatic Filter Coefficient |   |   | Reserved |
| 0      | 0    | 0                         | 0 | 0                            | 1 | 0 | 0        |

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

### Auto Exposure

Y mean value is continuously calculated every frame, and the integration time value is increased or decreased according to the displacement between current frame Y mean value and target Y mean value.



### AE Mode Control 1 [AEMODE1 : 70h : 29h]

| 7       | 6       | 5          | 4         | 3    | 2     | 1    | 0    |
|---------|---------|------------|-----------|------|-------|------|------|
| User-   | Anti-   | Anti-      | Ae Window |      |       |      |      |
| Defined | Banding | Banding    |           | Time | Speed | AE N | Node |
| Time    | Mode    | Min. Break | Enable    |      |       |      |      |
| 0       | 0       | 1          | 0         | 1    | 0     | 0    | 1    |

|                   | This pin make user to be able to put starting value of the integration time. If it |
|-------------------|------------------------------------------------------------------------------------|
| User-Defined Time | sets this pin to high and it writes the integration time, the exposure control is  |
|                   | started with the written integration time.                                         |

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

|                         | When Ar                                                                     | ti-Banding is enabled, AE initializes Integration Time registers[73h-  |  |  |  |  |  |  |
|-------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|--|--|--|
|                         | 75h] to                                                                     | 5h] to 2 x Anti-Banding Step value[7ah-7ch], and integration           |  |  |  |  |  |  |
|                         | incremen                                                                    | t/decrement amount is set to Anti-Banding Step value in order to       |  |  |  |  |  |  |
|                         | remove b                                                                    | panding noise caused by intrinsic energy waveform of light sources.    |  |  |  |  |  |  |
| Anti-Banding Mode       | Banding                                                                     | noise is inherent in CMOS image sensor that adopts rolling shutter     |  |  |  |  |  |  |
|                         | scheme f                                                                    | or image acquisition. In this mode, AE operates with very large unit,  |  |  |  |  |  |  |
|                         | typically                                                                   | a reciprocal of (2 x power line frequency), so that minute integration |  |  |  |  |  |  |
|                         | time tuni                                                                   | ing is not liable. Therefore, this mode is recommended for only        |  |  |  |  |  |  |
|                         | indoor us                                                                   | e.                                                                     |  |  |  |  |  |  |
|                         | When AE                                                                     | is still of out lock state despite that AE preamp analog gain update   |  |  |  |  |  |  |
| Anti-Banding Min. Break | value exceeds preamp minimum gain value(18h) and integration time(73h-      |                                                                        |  |  |  |  |  |  |
| Anti-Danding Min. Dreak | 75h) is reached to AE Anti-Banding Step(7ah-7ch), integration time(73h-75h) |                                                                        |  |  |  |  |  |  |
|                         | is broken to less than AE Anti-Banding Step(7ah-7ch).                       |                                                                        |  |  |  |  |  |  |
| AE Window Enable        | AE window mode enables. With this bit set to high, window mode is           |                                                                        |  |  |  |  |  |  |
|                         | discarded and full image data is accounted for AE Y frame mean evaluation.  |                                                                        |  |  |  |  |  |  |
| Time Speed              | (fast)11 -                                                                  | - 10 – 01 – 00(slow)                                                   |  |  |  |  |  |  |
|                         | 11                                                                          | Gain-Only control mode. Only preamp gain is controlled to get          |  |  |  |  |  |  |
|                         | 11                                                                          | optimum exposure state.                                                |  |  |  |  |  |  |
|                         | 10                                                                          | Time-Only control mode. Only integration time is controlled to get     |  |  |  |  |  |  |
| AE Mode                 | 10                                                                          | optimum exposure state.                                                |  |  |  |  |  |  |
|                         | 01                                                                          | Time-Gain control mode. Integration time and preamp gain are           |  |  |  |  |  |  |
|                         |                                                                             | controlled to get optimum exposure state.                              |  |  |  |  |  |  |
|                         | 00                                                                          | AE function is disabled                                                |  |  |  |  |  |  |

### AE Mode Control 2 [AEMODE2 : 71h : edh]

| 7      | 6      | 5      | 4       | 3                 | 2                 | 1                          | 0                         |
|--------|--------|--------|---------|-------------------|-------------------|----------------------------|---------------------------|
| Gain S | peed 1 | Gain S | Speed 2 | Time Fine<br>Tune | Gain Fine<br>Tune | Digital<br>Gain<br>Control | Analog<br>Gain<br>Control |
| 1      | 1      | 1      | 0       | 1                 | 1                 | 0                          | 1                         |

| Gain Speed1    | This value means the speed of pre-amp. Gain changed when the environment condition moves rapidly from low luminance to high luminance. |  |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Gain Speed2    | Gain update speed is specified as follows at the normal condition.<br>(fast) $11 - 10 - 01 - 00$ (slow)                                |  |  |  |
| Time Fine Tune | Integration time fine tuning is performed when AE arrive around AE Fine Tune Boundary to settle into AE lock state smoothly.           |  |  |  |
| Gain Fine Tune | Amp gain fine tuning is performed when AE arrive around AE Fine Tune<br>Boundary to settle into AE lock state smoothly.                |  |  |  |

| Digital Gain Control | If this bit is high and Amp Gain register(17h) is less than Anti-Banding Gain<br>Min(91h), digital gain controls the amplitude of Bayer raw data to prevent not<br>to reach the saturation level.(very high luminance compensation) |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analog Gain Control  | AE updates Amp Gain register(17h) in order to reach optimum exposure<br>state                                                                                                                                                       |

### AE Windows Weight [AEWINWGT : 72h : cdh]

| 7     | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|-------|--------|--------|--------|--------|--------|--------|--------|
| Тор и | vindow | Center | window | Bottom | window | Side v | /indow |
| 1     | 1      | 0      | 0      | 1      | 1      | 0      | 1      |

| Value | Weight |
|-------|--------|
| 00    | 1      |
| 01    | 1/4    |
| 10    | 1/8    |
| 11    | 1/16   |

| Top(1/16)                    |  |  |  |  |  |  |
|------------------------------|--|--|--|--|--|--|
| Side(1/4) Center(1) Side(1/4 |  |  |  |  |  |  |
| Bottom(1/16)                 |  |  |  |  |  |  |

### Integration Time High [INTH: 73h : 02h]

| 7               | 6                       | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|-----------------|-------------------------|---|---|---|---|---|---|--|--|--|
|                 | Integration Time Higher |   |   |   |   |   |   |  |  |  |
| 0 0 0 0 0 0 1 0 |                         |   |   |   |   |   |   |  |  |  |

### Integration Time Middle [INTM: 74h: 71h]

| 7             | 6                       | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|---------------|-------------------------|---|---|---|---|---|---|--|--|--|
|               | Integration Time Middle |   |   |   |   |   |   |  |  |  |
| 0 1 1 1 0 0 1 |                         |   |   |   |   |   |   |  |  |  |

### Integration Time Low [INTL: 75h: 03h]

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|---|---|---|---|---|---|---|---|
|   |   | 1 | ) |   |   |   |   |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

Integration time value register defines the time which active pixel element evaluates photon energy that is converted to digital data output by internal ADC processing. Integration time is equivalent to exposure time of general camera so that integration time needs to be increased in dark environment and decreased according to lighting condition. Maximum integration time is This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

register maximum value( $2^{24}$ -1) x sensor clock period (SCP = 47.62ns, SCF = 21MHz) = 0.7989sec. 1) And the lower 2bit of Integration Tim[75h] is always masking as to "11", thus Integration time increase/decrease 4code step.

### SCF = Sensor Clock Frequency

#### AE Target Outdoor[LUTARGET1 : 76h : 5ah]

| 5 | -                 |   | - |   |   |   |   |  |  |  |  |
|---|-------------------|---|---|---|---|---|---|--|--|--|--|
| 7 | 6                 | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|   | AE Target Outdoor |   |   |   |   |   |   |  |  |  |  |
| 0 | 1                 | 0 | 1 | 1 | 0 | 1 | 0 |  |  |  |  |

### AE Target Indoor[LUTARGET2 : 77h : 5ah]

| 7               | 6                | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|-----------------|------------------|---|---|---|---|---|---|--|--|--|--|
|                 | AE Target Indoor |   |   |   |   |   |   |  |  |  |  |
| 0 1 0 1 1 0 1 0 |                  |   |   |   |   |   |   |  |  |  |  |

### AE Lock Boundary [AELOCKFINEBND : 78h : f6h]

| 7 | 6       | 5        | 4 | 3                | 2 | 1 | 0 |  |
|---|---------|----------|---|------------------|---|---|---|--|
|   | AE Fine | Boundary |   | AE Lock Boundary |   |   |   |  |
| 1 | 1       | 1        | 1 | 0 1 1 0          |   |   |   |  |

AE Lock Boundary specifies the displacement of Y Frame Mean value(7dh) from AE Target in which AE goes into LOCK state. With Anti-Banding is enabled, this displacement condition is discarded, and instead AE Speed Unlock Boundary is used as Lock boundary.

AE Fine Boundary specifies the displacement of Y Frame Mean value(7dh) from AE Target in which AE start to tune fine integration time or amp gain in order to goes into lock state smoothly.

### AE Unlock Boundary [AEUNLOCKBND : 79h : 2ah]

| 7 | 6                  | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|---|--------------------|---|---|---|---|---|---|--|--|--|--|
|   | AE Unlock Boundary |   |   |   |   |   |   |  |  |  |  |
| 0 | 0 0 1 0 1 0 1 0    |   |   |   |   |   |   |  |  |  |  |

AE Speed Boundary 0 specifies Y Frame Mean displacement from AE Target where integration time increment/decrement speed changes from 2x (integration unit step) to 1x (integration unit step). In anti-banding mode, this boundary is used as lock boundary for exposure control.

### AE Anti-Banding Step High [AEINTSTEPH : 7ah : 01h]

| 7 | 6         | 5           | 4           | 3 | 2 | 1 | 0 |
|---|-----------|-------------|-------------|---|---|---|---|
|   |           | Integration | Step Higher |   |   |   |   |
| 0 | 0 0 0 0 0 |             |             |   |   | 0 | 1 |

### AE Anti-Banding Step Middle [AEINTSTEPM : 7bh : 38h]

| 7               | 6                       | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|-----------------|-------------------------|---|---|---|---|---|---|--|--|--|
|                 | Integration Step Middle |   |   |   |   |   |   |  |  |  |
| 0 0 1 1 1 0 0 0 |                         |   |   |   |   |   |   |  |  |  |

### AE Anti-Banding Step Low [AEINTSTEPL : 7ch : 80h]

| 7                      | 6 | 5 | 4 | 3   | 2 | 1 | 0        |  |  |
|------------------------|---|---|---|-----|---|---|----------|--|--|
| Integration Step Lower |   |   |   |     |   |   |          |  |  |
| 1 0 0 0 0 0 0 0        |   |   |   |     |   |   |          |  |  |
|                        |   |   |   | • • |   |   | <b>D</b> |  |  |

AE Anti-Banding Step specifies integration time unit value that AE uses when Anti-Banding is enabled. Anti-Banding Step value is resolved by the following equation.

Anti-Banding Step Value = Sensor Clock Frequency (SCF) / (2x power line frequency)

The recommend value is set with SCF 21MHz, 60Hz power line, that is,

Anti-Banding Step Value = 21MHz / (2 x 60) = 175000(dec) = 2AB98(hex)

### AE Integration Time Limit High [AEINTLIMITH : 7dh : 09h]

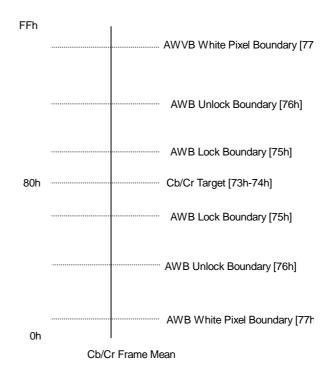
| 7 | 6                                | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|---|----------------------------------|---|---|---|---|---|---|--|--|--|--|
|   | AE Integration Time Limit Higher |   |   |   |   |   |   |  |  |  |  |
| 0 | 0 0 0 0 1 0 1                    |   |   |   |   |   |   |  |  |  |  |

### AE Integration Time Limit Middle [AEINTLIMITM : 7eh : c4h]

| 7 | 6                                | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|---|----------------------------------|---|---|---|---|---|---|--|--|--|
|   | AE Integration Time Limit Middle |   |   |   |   |   |   |  |  |  |
| 1 | 1 1 0 0 0 1 0 0                  |   |   |   |   |   |   |  |  |  |

### AE Integration Time Limit Low [AEINTLIMITL : 7fh : 00h]

| 7                               | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |
|---------------------------------|---|---|---|---|---|---|---|--|
| AE Integration Time Limit Lower |   |   |   |   |   |   |   |  |
| 0                               | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |


These three registers define the maximum integration time value that is allowed to sensor operation. It is desirable to set the value to multiples of AE Anti-Banding Step to easily operate with Anti-banding mode enabled. The recommend value is set to 5 frames per second with SCF set to 21MHz.

21MHz / 5 = 4200000(dec) = 401640(hex)

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

### Auto White Balance

Cb/Cr frame mean value is calculated every frame and according to Cb/Cr frame mean values' displacement from Cb/Cr white target point, R/B scaling values for R/B data are resolved.



### AWB Mode Control [AWBMODE : 80h : 18h]

| 7        | 6                   | 5                              | 4             | 3                            | 2   | 1     | 0                |
|----------|---------------------|--------------------------------|---------------|------------------------------|-----|-------|------------------|
| Reserved | Test Mode<br>Enable | User Color<br>Matrix<br>Enable | AWB<br>Enable | AWB Full<br>Window<br>Enable | AWB | Speed | AWB Low<br>Speed |
| 0        | 0                   | 0                              | 1             | 1                            | 0   | 0     | 0                |

| Test Mode Enable         | This value is using at only simulation or test                               |  |  |  |  |
|--------------------------|------------------------------------------------------------------------------|--|--|--|--|
|                          | When this bit set to high, color matrix coefficient[CMA11~CMA33] is used for |  |  |  |  |
| User Color Matrix Enable | lor space conversion matrix. And if this bit set to low, the equation from   |  |  |  |  |
|                          | CIR-601 is used.                                                             |  |  |  |  |
| AWB Enable               | Auto White Balance Control Enabled                                           |  |  |  |  |
| AWB Full Window          | With this bit set to low, AWB windows weight can be changed                  |  |  |  |  |
| Enable                   |                                                                              |  |  |  |  |
| AWB Speed                | (Fast)11 - 10 - 01 - 00(slow)                                                |  |  |  |  |

| AWB Low Speed | With this bit set to high, analog gain speed is decreased to 1/4 of the normal |
|---------------|--------------------------------------------------------------------------------|
|               | speed                                                                          |

### AWB Windows Weight [AWBWINWGT : 82h : 00h]

|   | 7          | 6 | 5             | 4 | 3             | 2 | 1           | 0 |
|---|------------|---|---------------|---|---------------|---|-------------|---|
| Γ | Top window |   | Center window |   | Bottom window |   | Side window |   |
|   | 0          | 0 | 0             | 0 | 0             | 0 | 0           | 0 |

| Value | Weight |
|-------|--------|
| 00    | 1      |
| 01    | 1/4    |
| 10    | 1/8    |
| 11    | 1/16   |

| Top(1)    |           |         |  |  |  |  |  |  |
|-----------|-----------|---------|--|--|--|--|--|--|
| Side(1)   | Center(1) | Side(1) |  |  |  |  |  |  |
| Bottom(1) |           |         |  |  |  |  |  |  |

### Cb Frame Mean Value [CBTARGT : 83h : 80h]

| 7             | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|---------------|---|---|---|---|---|---|---|--|--|--|
| Cb Frame Mean |   |   |   |   |   |   |   |  |  |  |
| 1             | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| <b>TI</b>     |   |   |   |   |   |   |   |  |  |  |

This register defines Cb target frame mean value for AWB operation.

### Cr Frame Mean Value [CRTARGT : 84h : 80h]

| 7                                                                       | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|-------------------------------------------------------------------------|---|---|---|---|---|---|---|--|--|
| Cr Frame Mean                                                           |   |   |   |   |   |   |   |  |  |
| 1                                                                       | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |
| This we minter defines On terrest from a many value for AM/D an anotice |   |   |   |   |   |   |   |  |  |

This register defines Cr target frame mean value for AWB operation.

### AWB Lock Boundary [AWBLOCKBND : 85h : 04h]

| 7        | 6 | 5 | 4 | 3                 | 2 | 1 | 0 |  |
|----------|---|---|---|-------------------|---|---|---|--|
| Reserved |   |   |   | AWB Lock Boundary |   |   |   |  |
| 0        | 0 | 0 | 0 | 0                 | 1 | 0 | 0 |  |

It specifies Cb/Cr frame mean values' displacement from Cb/Cr Target (73h-74h) value where AWB goes into LOCK state.

### AWB Unlock Boundary [AWBUNLOCKLBND : 86h : 20h]

| 7 6 5 4 3 2 1 0 |
|-----------------|
|-----------------|

| AWB Unlock Boundary |   |   |   |   |   |   |   |  |
|---------------------|---|---|---|---|---|---|---|--|
| 0                   | 0 | 1 | 0 | 0 | 0 | 0 | 0 |  |

It specifies Cb/Cr frame mean values' displacement from Cb/Cr Target (73h-74h) where AWB is released from LOCK state. AWB operation retains LOCK state unless Cb/Cr frame mean values' displacement value exceeds this boundary. The value should be larger AWB Lock Boundary.

### AWB Cb White Pixel Boundary [CBWHITEBND : 87h : 30h]

| 7 | 6                           | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|---|-----------------------------|---|---|---|---|---|---|--|--|--|--|
|   | AWB Cb White Pixel Boundary |   |   |   |   |   |   |  |  |  |  |
| 0 | 0 0 1 1 0 0 0 0             |   |   |   |   |   |   |  |  |  |  |

#### AWB Cr White Pixel Boundary [CRWHITEBND : 88h : 30h]

| 7 | 6                           | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|---|-----------------------------|---|---|---|---|---|---|--|--|--|--|
|   | AWB Cr White Pixel Boundary |   |   |   |   |   |   |  |  |  |  |
| 0 | 0 0 1 1 0 0 0 0             |   |   |   |   |   |   |  |  |  |  |

### AWB C Boundary [AWBCBND : 89h : 30h]

| 7 | 6               | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|---|-----------------|---|---|---|---|---|---|--|--|--|--|
|   | AWB C Boundary  |   |   |   |   |   |   |  |  |  |  |
| 0 | 0 0 1 1 0 0 0 0 |   |   |   |   |   |   |  |  |  |  |

#### AE State Machine [AEFSM : 8ch : RO]

| 7  | 6      | 5        | 4  | 3  | 2      | 1       | 0  |
|----|--------|----------|----|----|--------|---------|----|
|    | AE Moo | de State |    |    | AE Loo | k state |    |
| RO | RO     | RO       | RO | RO | RO     | RO      | RO |

#### AWB State Machine [AWBFSM : 8dh : RO]

| 7  | 6        | 5  | 4      | 3      | 2       | 1      | 0       |
|----|----------|----|--------|--------|---------|--------|---------|
|    | reserved |    | AE/AWB | Cb Loc | k State | Cr Loc | k State |
|    |          |    |        |        |         |        |         |
| RO | RO       | RO | RO     | RO     | RO      | RO     | RO      |

#### Lu Frame Mean [LUFMEAN : 8eh : RO]

| 7  | 6                    | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|----|----------------------|---|---|---|---|---|---|--|--|--|
|    | Lu Frame Mean        |   |   |   |   |   |   |  |  |  |
| RO | RO RO RO RO RO RO RO |   |   |   |   |   |   |  |  |  |

|                               | 6                           | 5                         | 4                                                      | 3                                                       | 2           | 1  | 0  |
|-------------------------------|-----------------------------|---------------------------|--------------------------------------------------------|---------------------------------------------------------|-------------|----|----|
|                               |                             |                           | Cb Fra                                                 | me Mean                                                 |             |    |    |
| RO                            | RO                          | RO                        | RO                                                     | RO                                                      | RO          | RO | RO |
|                               |                             |                           |                                                        | ·                                                       |             |    |    |
| Frame                         | Mean [CRFM                  | IEAN : 90h                | : RO]                                                  |                                                         |             |    |    |
| 7                             | 6                           | 5                         | 4                                                      | 3                                                       | 2           | 1  | 0  |
|                               |                             |                           | Cr Fra                                                 | me Mean                                                 |             |    |    |
| RO                            | RO                          | RO                        | RO                                                     | RO                                                      | RO          | RO | RO |
| 7                             | 6                           | 5                         | 4<br>Anti-Band                                         | 3<br>Ing Gain Min                                       | 2           | 1  | 0  |
|                               |                             |                           |                                                        |                                                         |             |    |    |
|                               |                             |                           |                                                        |                                                         |             |    | •  |
| 0                             | 0                           | 0                         | 1                                                      | 0                                                       | 1           | 0  | 0  |
|                               |                             |                           |                                                        |                                                         |             |    |    |
| n <b>ti-Band</b><br>7         | ing Gain Ma<br>6            | x [KLBNDN<br>5            | 1AX:92h:3<br>4                                         | <b>dh]</b><br>3                                         | 2           | 1  | 0  |
|                               | -                           | _                         | 4                                                      | _                                                       | 2           | 1  | 0  |
|                               | -                           | _                         | 4                                                      | 3                                                       | 2           | 1  | 0  |
| 7<br>0<br>WB Whit             | 0<br>0<br>e Pixel Bour      | 5<br>1<br>ndary [AWB      | 4<br>Anti-Bandi<br>1<br>SWHITE : 93                    | 3<br>ng Gain Max<br>1<br>n : ffh]                       | 1           | 0  | 1  |
| 7                             | 6                           | 5<br>1<br>ndary [AWB<br>5 | 4<br>Anti-Bandi<br>1<br>SWHITE : 931<br>4              | 3<br>ng Gain Max<br>1<br>n : ffh]<br>3                  | 2           |    |    |
| 7<br>0<br><b>WB Whit</b><br>7 | 6<br>0<br>e Pixel Bour<br>6 | 5<br>1<br>ndary [AWB<br>5 | 4<br>Anti-Bandi<br>1<br>SWHITE : 93I<br>4<br>AWB White | 3<br>ng Gain Max<br>1<br>n : ffh]<br>3<br>Pixel Boundar | 1<br>2<br>Y | 0  | 0  |
| 7<br>0<br>WB Whit             | 0<br>0<br>e Pixel Bour      | 5<br>1<br>ndary [AWB<br>5 | 4<br>Anti-Bandi<br>1<br>SWHITE : 931<br>4              | 3<br>ng Gain Max<br>1<br>n : ffh]<br>3                  | 2           | 0  | 1  |
| 7<br>0<br><b>WB Whit</b><br>7 | 6<br>0<br>e Pixel Bour<br>6 | 5<br>1<br>ndary [AWB<br>5 | 4<br>Anti-Bandi<br>1<br>SWHITE : 93I<br>4<br>AWB White | 3<br>ng Gain Max<br>1<br>n : ffh]<br>3<br>Pixel Boundar | 1<br>2<br>Y | 0  | 0  |
| 7<br>0<br><b>WB Whit</b><br>7 | 6<br>0<br>e Pixel Bour<br>6 | 5<br>1<br>ndary [AWB<br>5 | 4<br>Anti-Bandi<br>1<br>SWHITE : 93I<br>4<br>AWB White | 3<br>ng Gain Max<br>1<br>n : ffh]<br>3<br>Pixel Boundar | 1<br>2<br>Y | 0  | 0  |

### AWB Black Pixel Boundary [AWBBLACK : 94h : 00h]

|   | 7                        | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|---|--------------------------|---|---|---|---|---|---|---|--|--|
|   | AWB Black Pixel Boundary |   |   |   |   |   |   |   |  |  |
| ľ |                          |   |   |   |   |   |   |   |  |  |
|   |                          |   |   |   |   |   |   |   |  |  |

### AWB Valid Number [AWBNUMBER : 95h : 02h]

| 7 | 6                | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|---|------------------|---|---|---|---|---|---|--|--|--|
|   | AWB Valid Number |   |   |   |   |   |   |  |  |  |
| 0 | 0 0 0 0 0 0 1 0  |   |   |   |   |   |   |  |  |  |

### Integration-Scan Plane Offset High [INTSCNOFSH : 96h : RO]

| 7  | 6                            | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|----|------------------------------|---|---|---|---|---|---|--|--|--|--|
|    | Integration-Scan Offset High |   |   |   |   |   |   |  |  |  |  |
| RO | RO RO RO RO RO RO RO         |   |   |   |   |   |   |  |  |  |  |

#### Integration-Scan Plane Offset Middle [INTSCNOFSM : 97h : RO]

| 7  | 6                    | 5   | 4            | 3            | 2   | 1 | 0 |  |  |  |  |
|----|----------------------|-----|--------------|--------------|-----|---|---|--|--|--|--|
|    |                      | Int | egration-Sca | n Offset Mid | dle |   |   |  |  |  |  |
| RO | RO RO RO RO RO RO RO |     |              |              |     |   |   |  |  |  |  |

### Integration-Scan Plane Offset Low [INTSCNOFSL : 98h : RO]

| 7  | 6                           | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
|----|-----------------------------|---|---|---|---|---|---|--|--|--|--|
|    | Integration-Scan Offset Low |   |   |   |   |   |   |  |  |  |  |
| RO | RO RO RO RO RO RO RO        |   |   |   |   |   |   |  |  |  |  |

#### AWB Red Gain Maximum Value [AWBRGAINMAX : 9ah : 7f]

| 7 | 6                      | 5 | 4 | 3 | 2 | 1 0 |  |  |  |  |
|---|------------------------|---|---|---|---|-----|--|--|--|--|
|   | R/B Gain Maximum Value |   |   |   |   |     |  |  |  |  |
| 0 | 0 1 1 1 1 1 1 1        |   |   |   |   |     |  |  |  |  |

#### AWB Red Gain Minimum Value [AWBRGAINMIN : 9bh : 00]

|   |                        | - |   |   | - |   |   |  |  |  |
|---|------------------------|---|---|---|---|---|---|--|--|--|
| 7 | 6                      | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|   | R/B Gain Minimum Value |   |   |   |   |   |   |  |  |  |
| 0 | 0                      | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |

#### AWB Blue Gain Maximum Value [AWBBGAINMAX : 9ch : 7f]

| 7 | 6                      | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|---|------------------------|---|---|---|---|---|---|--|--|--|
|   | R/B Gain Maximum Value |   |   |   |   |   |   |  |  |  |
| 0 | 0 1 1 1 1 1 1 1        |   |   |   |   |   |   |  |  |  |

#### AWB Blue Gain Minimum Value [AWBBGAINMIN : 9dh : 00]

| 7 | 6                      | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|---|------------------------|---|---|---|---|---|---|--|--|--|
|   | R/B Gain Minimum Value |   |   |   |   |   |   |  |  |  |
| 0 | 0                      | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |

### PLL Control Mode A [PCTRA : a0h : 01h]

| 7 | 6        | 5 | 4   | 3   | 2      | 1             | 0              |
|---|----------|---|-----|-----|--------|---------------|----------------|
|   |          |   | VCO | PLL | Dumana |               |                |
|   | Reserved |   |     |     |        | Power<br>Down | Bypass<br>Mode |
| 0 | 0        | 0 | 0   | 0   | 0      | 0             | 1              |

| VCO Power Down<br>(Active High) | When VCO Power Down is active, VCO does not oscillate. For getting out of VCO Power Down, VCO initialization is required.                                                                                   |  |  |  |  |  |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| PLL Power Down<br>(Active High) | When PLL Power Down is active, digital circuits of PLL do not operate and<br>the charge pump circuit is disabled. Also Bypass Mode or Sleep<br>Mode(SCTRB[4]) register is set to high, PLL goes into sleep. |  |  |  |  |  |  |  |
| Bypass Mode                     | <ul><li>0 PLL output clock is 1/F(ck).</li><li>1 PLL output clock is the same of PLL input clock.</li></ul>                                                                                                 |  |  |  |  |  |  |  |

### \* VCO initialization

To ensure the proper operation of the PLL, the activation of VCO initialization signal is required just after the deactivation of the VCO Power Down. During power-up sequence VCO initialization signal is recommended for more than 100ns.

### PLL Control Mode B [PCTRB : a1h : 1dh]

| 7         | 6              | 5             | 4             | 3                | 2 | 1 | 0 |
|-----------|----------------|---------------|---------------|------------------|---|---|---|
| Res       | erved          | Post D        | Divisor       | Charge Pump Bias |   |   |   |
| 0         | 0              | 0             | 1             | 1                | 1 | 1 | 0 |
| The value | of Post Divise | r according t | to the output | froquoney        |   |   |   |

The value of Post Divisor according to the output frequency

| De et Division | <u> </u> |         |  |  |  |
|----------------|----------|---------|--|--|--|
| Post Divisor   | Min      | Мах     |  |  |  |
| 11             | 5MHz     | 12.5MHz |  |  |  |
| 10             | 10MHz    | 25MHz   |  |  |  |
| 01             | 20MHz    | 50MHz   |  |  |  |
| 00             | 40MHz    | 100MHz  |  |  |  |

### PLL Reference Divisor [PREFDIV : a3h : 01h]

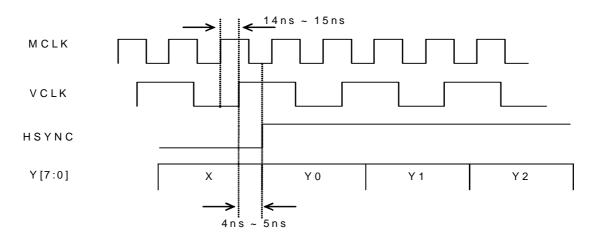
| 7 | 6                     | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|---|-----------------------|---|---|---|---|---|---|--|--|--|
|   | PLL Reference Divisor |   |   |   |   |   |   |  |  |  |
| 0 | 0                     | 0 | 0 | 0 | 0 | 0 | 1 |  |  |  |

### PLL Feedback Divisor High [PFDDIVH : a4h : 00h]

MagnaChip Confidential

| 7    | 6     | 5 | 4                         | 3 | 2 | 1 | 0 |  |
|------|-------|---|---------------------------|---|---|---|---|--|
| Rese | erved |   | PLL Feedback Divisor High |   |   |   |   |  |
| 0    | 0     | 0 | 0                         | 0 | 0 | 0 | 0 |  |

### PLL Feedback Divisor Low [PFDDIVL : a5h : 02h]


| 7 | 6                        | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|---|--------------------------|---|---|---|---|---|---|--|--|--|
|   | PLL Feedback Divisor Low |   |   |   |   |   |   |  |  |  |
| 0 | 0                        | 0 | 0 | 0 | 0 | 1 | 0 |  |  |  |

The operation frequency of PLL is related to the proportion of Reference(PREFDIV) to Feedback(PFDDIV) Divisor. F(ck) is actually determined by the following equation.

 $F(ck) = \frac{F(ref) * (Feedback \ Divisor)}{(Reference \ Divisor)}$ 

F(ck) : frequency of output F(ref) : frequency of PLL input Feedback Divisor : PFDDIV[13:0] + 2 Reference Divisor : PREFDIV[7:0] + 1

### Data Output Timing and Interface



As specified is the above data output timing diagram, the timing margin between video clock pin(VCLK) and data pins(Y[7:0]) is about 4n~5ns. This margin may be sufficient or not according to how much video clock and data pins are delayed internally in the backend chip, respectively. To safely latch the data output in the backend chip, it is recommended that data be latched at negative edge of VCLK.

The above timing margin diagram represents 16bit output interface, but is also valid for 8bit output interface.

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

## Output Data according to Video Mode

Output Data according to Video Mode is controlled by configuring Sensor Control A[01h]. Configurable options are specified again for your reference.

|                                          | <u> </u>                               |                                                                                                        | -                       |                          |                                                   |                         |                          |
|------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|---------------------------------------------------|-------------------------|--------------------------|
| Format<br>Mode                           | Sub-<br>Sampling<br>Mode<br>(SCTRA[4]) | * YCbCr 4:2:2<br>SCTRC[7] = 0h<br>OUTFMT[3:0] = 0h<br>* RGB 5:6:5<br>SCTRC[7] = 0h<br>OUTFMT[3:0] = 4h | Video<br>Clock<br>(MHz) | Frame<br>Rate<br>(±1fps) | Bayer Output<br>SCTRC[7] = 1h<br>OUTFMT[3:0] = 0h | Video<br>Clock<br>(MHz) | Frame<br>Rate<br>(±1fps) |
| SXGA<br>SCTRA[3] = 0h<br>SCTRA[1:0] = 3h | (don't care)                           | 0                                                                                                      | 42                      | 15                       | 0                                                 | 21                      | 15                       |
| VGA<br>SCTRA[3] = 0h                     | ISP(0)                                 | 0                                                                                                      | 21                      | 15                       | Х                                                 | Х                       | Х                        |
| SCTRA[3] = 01<br>SCTRA[1:0] = 2h         | Bayer(1)                               | 0                                                                                                      | 21                      | 28                       | 0                                                 | 10.5                    | 28                       |
| QVGA<br>SCTRA[3] = 0h                    | ISP(0)                                 | 0                                                                                                      | 10.5                    | 15                       | Х                                                 | Х                       | х                        |
| SCTRA[1:0] = 1h                          | Bayer(1)                               | 0                                                                                                      | 10.5                    | 55                       | 0                                                 | 5.25                    | 56                       |
| 4CIF<br>SCTRA[3] = 1h<br>SCTRA[1:0] = 3h | (don't care)                           | 0                                                                                                      | 42                      | 15                       | Х                                                 | х                       | х                        |
| CIF<br>SCTRA[3] = 1h                     | ISP(0)                                 | 0                                                                                                      | 21                      | 15                       | Х                                                 | Х                       | Х                        |
| SCTRA[3] = III<br>SCTRA[1:0] = 2h        | Bayer(1)                               | Х                                                                                                      | Х                       | х                        | Х                                                 | Х                       | Х                        |
| QCIF<br>SCTRA[3] = 1h                    | ISP(0)                                 | 0                                                                                                      | 10.5                    | 15                       | х                                                 | Х                       | х                        |
| SCTRA[1:0] = 1h                          | Bayer(1)                               | Х                                                                                                      | Х                       | Х                        | Х                                                 | Х                       | Х                        |

### < Video Mode Setting (@ MCLK 21MHz, PLL 2x)

Output timings for general configurations are described below. Slot named as "X" means that it is has no meaningful value and should be discarded.

If a clock division(SCTRB[2:0]) is nothing(3'b000), VCLK is equal to MCLK in the case of PLL off, and twice of MCLK in the case of PLL 2x. Output data should be captured when VCLK is falling edge. If you have OUTINV = 0x01, should capture at the rising edge.

### SXVGA(Full), VGA(1/4), QVGA(1/16) Mode (Operating clock = MCLK, PLL off)

### 1. YCbCr 4:2:2 with 8bit output

Register bit configurations : Sensor Control A : Full or Sub-sampling Mode Output Format : 8bit Output, Y First, Cb(Blue) First

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

## MagnaChip Confidential

| MCLK                                   |                                                         |                                        |                                |             |             |             |             |             |             |
|----------------------------------------|---------------------------------------------------------|----------------------------------------|--------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| HSYNC                                  |                                                         |                                        |                                |             |             |             |             |             |             |
| Full <b>Mode</b>                       | Video Clo                                               | ck & Outp                              | out Data                       |             |             |             |             |             |             |
| CLK                                    |                                                         |                                        |                                |             |             |             |             |             |             |
| Y[7:0]                                 | × ×                                                     | Y0 CB<br>01                            | Y1 Cr<br>01                    | Y2 Cb<br>23 | Y3 Cr<br>23 | Y4 Cb<br>45 | Y5 Cr<br>45 | Y8 СЬ<br>87 | Y7 Cr<br>67 |
| 1 <b>/4</b> Sub-S                      | ampling V                                               | ideo Cloc                              | k&Outp                         | ut Data     |             |             |             |             |             |
| CLK                                    |                                                         |                                        |                                |             |             |             |             |             |             |
| Y[7:0]                                 | ×                                                       | ΥO                                     | Cb02                           | Y2          | Cr02        | Y4          | Cb46        | Y6          | Cr46        |
| 1/16 Sub-                              | Sampling                                                | Video Cio                              | ck & Out                       | put Data    |             |             |             |             |             |
| CLK                                    |                                                         |                                        |                                |             |             |             |             |             |             |
| Y[7:0]                                 | ×                                                       | Y                                      | 0                              | Ct          | 04          | Y Y         | <i>′</i> 4  | Cr          | 04          |
| Regis<br>Sens<br>Outp<br>MCLK<br>HSYNC | Cr 4:2:2 wi<br>ster bit con<br>sor Control<br>ut Format | figuration<br>A : Full o<br>: 16bit Ou | s :<br>r Sub-sar<br>utput, Cb( |             |             |             |             |             |             |
|                                        |                                                         |                                        |                                |             |             |             |             |             |             |
| CLK<br>Y[ <b>7</b> :0]                 | · · ·                                                   | Y0                                     | Y1                             | Y2          | Y3          | Y4          | Y5          | Y6          | ¥7          |
| C[7:0]                                 | ×                                                       | СЬ01                                   | Cr01                           | Cb23        | Cr23        | Cb45        | Cr45        | Сь67        | Cr67        |
| 1 <b>/4 Sub</b> -5                     | ampling V                                               | ideo Cloci                             | k & Outpu                      | ut Data     |             |             |             |             |             |
| CLK                                    |                                                         |                                        |                                |             |             |             |             |             |             |
| Y[7:0]                                 | ×                                                       | Y                                      | 0                              | Y2          | -           | Y4          |             | <b>Y</b> 6  |             |
| C[ <b>7:0</b> ]                        | *                                                       | Cb                                     | 02                             | Cr0         | 2           | Cb4         | 6           | Cr46        |             |
| 1/16 Sub-                              | Sampling '                                              | Video Cio                              | ck & Outr                      | out Data    | _           |             |             |             |             |
| CLK                                    |                                                         |                                        |                                |             |             |             |             |             |             |
| Y[7:0]                                 | ×                                                       |                                        | Y                              | 0           |             |             | Y4          |             |             |
| C[ <b>7</b> :0]                        | ×                                                       |                                        | Cb                             | 04          |             |             | Cr04        | 1           |             |

### 3. YCbCr 4:4:4 with 16bit output

Register bit configurations Sensor Control A : Full or Sub-sampling Mode Output Format : 16bit Output, Y First, Cb(Blue) First

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

| MCLK      |       |        |        |      |       |      |       |      |     |     |     |     |     |     |     |     |     |     |
|-----------|-------|--------|--------|------|-------|------|-------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| HSYNC     |       |        |        |      |       | _    |       |      |     |     |     |     |     |     |     |     |     |     |
| Full Mode | Video |        | ck & . | Outp | out D | ata  |       |      |     |     |     |     |     |     |     |     |     |     |
| CLK       |       |        |        |      |       |      |       |      |     |     |     |     |     |     |     |     |     |     |
| Y[7:0]    | ×     | ×      | YO     | ×    | Y 1   | ×    | ¥2    | ×    | Y3  | ×   | ¥4  | ×   | Y5  | ×   | Y6  | ×   | Υ7  | ×   |
| C[7:0]    | ×     | ×      | СЬО    | Cr0  | СЬ1   | Cr1  | СЬ2   | Cr2  | СЬЗ | Cr3 | СЬ4 | Cr4 | СЬ5 | Cr5 | СЬб | Cr6 | СЬ7 | Cr7 |
| 1/4 Sub-S | ampil | ng V   | Ideo   | Cloc | :k&.( | Dutp | ut Da | ita  |     |     |     |     |     |     |     |     |     |     |
|           |       | 1      |        |      |       |      |       | 1    |     |     |     |     |     | 1   |     |     |     |     |
| CLK       |       |        |        |      |       |      |       |      | J   |     |     |     |     |     |     |     |     |     |
| Y[7:0]    | >     | ×      | Y      | 0    | >     | <    | Y     | 2    | ;   | <   | Y   | 4   | >   | <   | Y   | 6   | ×   | :   |
| C[7:0]    | >     | ×      | Ct     | -0   | С     | rO   | CI    | 52   | С   | r2  | Ct  | 54  | С   | r4  | Ct  | 56  | C   | 6   |
| 1/16 Sub- | Samp  | ling ' | Video  |      | ck &  | Outp | put C | Data |     |     |     |     |     |     |     |     |     |     |
|           |       |        |        |      | 1     |      |       |      | 1   |     |     |     | 1   |     |     |     | 1   |     |
| CLK       |       |        |        |      |       |      | ]     |      |     |     | ]   |     |     |     | ]   |     |     |     |
| Y[7:0]    | >     | ×      |        | Y    | 0     |      |       | ,    | ×   |     |     | Y   | 4   |     |     | ,   | <   |     |
| C[7:0]    | >     | <      |        | C    | 60    |      |       | С    | rO  |     |     | Cl  | 54  |     |     | С   | r4  |     |

### 4. RGB 5:6:5 with 8bit output

Register bit configurations :

Sensor Control A : Full or Sub-sampling Mode

| Out                | out Forma | at : 8bit Ou       | tput, Cb(E | Blue) Firs   | t, RGB5:6 | 6:5     |         |         |         |
|--------------------|-----------|--------------------|------------|--------------|-----------|---------|---------|---------|---------|
| MCLK               |           |                    |            |              |           |         |         |         |         |
| HSYNC              |           |                    |            |              |           |         |         |         |         |
| Full Mode          | Video Cl  | ock & Outp         | out Data   |              |           |         |         |         |         |
| CLK                |           |                    |            |              |           |         |         |         |         |
| Y[7:0]             | ×××       | RGO GBO            | RG1 GB1    | RG2 GB2      | RG3 GB3   | RG4 GB4 | RG5 GB5 | RG6 GB6 | RG7 GB7 |
|                    | ۔<br>     | 7<br>R0[7:3],G0[5: | 3]} {G     | 0[2:0],B0[7: | 3]}       |         |         |         |         |
| 1 <b>/4 S</b> ub-8 | Sampling  | Video Cloc         | k & Outp   | ut Data      |           |         |         |         |         |
| CLK                |           |                    |            |              |           |         |         |         |         |
| Y[7:0]             | ×         | RG0                | GB0        | RG2          | GB2       | RG4     | GB4     | RG6     | GB6     |
| 1/16 Sub-          | -Sampling | J Video Cla        | ock & Out  | put Data     |           |         |         |         |         |
| CLK                |           |                    |            |              |           |         | ]       |         |         |
| Y[7:0]             | ×         | R                  | 30         | G            | в0        | R       | G4      | GI      | 34      |

### 5. RGB 5:6:5 with 16bit output

Register bit configurations :

Sensor Control A : Full or Sub-sampling Mode

Output Format : 16bit Output, Cb(Blue) First, RGB5:6:5

- 59 - 2005 MagnaChip Semiconductor Ltd.

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

| MCLK      |               |                                         |           |          |     |         |     |     |     |
|-----------|---------------|-----------------------------------------|-----------|----------|-----|---------|-----|-----|-----|
| HSYNC     |               |                                         |           |          |     |         |     |     |     |
| Full Mode | • Video Clock | <b>« &amp; O</b> utp                    | ut Data   |          |     |         |     |     |     |
| CLK       |               |                                         |           |          |     |         |     |     |     |
| Y[7:0]    | ×             | RGO                                     | RG1       | RG2      | RG3 | RG4     | RG5 | RG6 | RG7 |
| C[7:0]    | ×             | GB)                                     | GB1       | GB2      | GB3 | GB4     | GB5 | GB6 | GB7 |
| 1/4 Sub-5 |               | 7:3],G0[5:3<br>2:0],B0[7:3<br>Ieo Cloci | 8] }      | ut Data  |     |         |     | [   |     |
| CLK       |               | L                                       |           |          |     |         |     |     |     |
| Y[7:0]    | ×             | RG                                      | 90        | RC       | 32  | RC      | 34  | RC  | 36  |
| C[7:0]    | ×             | GE                                      | 30        | Gt       | 32  | GI      | 34  | Gi  | 36  |
| 1/16 Sub- | -Sampling Vi  | ideo Cio                                | ck & Outp | out Data |     | <b></b> |     | 1   |     |
| CLK       |               |                                         |           |          |     |         |     |     |     |
| Y[7:0]    | ×             |                                         | RC        | GO       |     |         | RC  | 34  |     |
| C[7:0]    | ×             |                                         | Gt        | 30       |     |         | GI  | 84  |     |

#### 6. RGB 4:4:4 with 16bit output

Register bit configurations :

Sensor Control A : Full or Sub-sampling Mode

| Out              | put Fo | rmat | : 16  | bit O | utput | t, Cb | (Blue | ) Fir | st, R | GB4 | :4:4 |    |    |    |    |    |    |    |
|------------------|--------|------|-------|-------|-------|-------|-------|-------|-------|-----|------|----|----|----|----|----|----|----|
| MCLK             |        |      |       |       | ΓĹ    | Ĺ     | Ĺ     | ŕ     |       |     |      |    |    |    |    |    |    |    |
| HSYNC            |        |      |       |       |       |       |       |       |       |     |      |    |    |    |    |    |    |    |
| Full Mode        | Video  |      | ck &  | Outr  | out D | ata   |       |       |       |     |      |    |    |    |    |    |    |    |
| CLK              |        |      |       |       |       |       |       |       |       |     |      |    |    |    |    |    |    |    |
| Y[7:0]           | ×      | ×    | G0    | ×     | G1    | ×     | G2    | ×     | G3    | ×   | G4   | ×  | G5 | ×  | G6 | ×  | G7 | ×  |
| C[7:0]           | ×      | ×    | В0    | R0    | B1    | R1    | B2    | R2    | B3    | RЗ  | В4   | R4 | В5 | R5 | В6 | R6 | В7 | R7 |
| 1/4 Sub-5<br>CLK | Sampil |      | /Ideo |       | k & i | Outp  | ut De | ita   |       |     |      |    |    |    |    |    |    |    |
| Y[7:0]           | ;      | ×    | G     | àO    | :     | ×     | G     | 2     | ,     | <   | G    | i4 | ,  | <  | G  | ì6 | >  | <  |
| C[7:0]           | ;      | ×    | E     | 30    | F     | 10    | B     | 2     | R     | 2   | B    | 4  | R  | 4  | E  | 6  | R  | 6  |
| 1/16 Sub-<br>CLK | -Samp  | ing  | Vide  |       | ck 8  | Out   | put C | ata   |       |     |      |    | ]  |    |    |    |    |    |
| Y[7:0]           |        | ×    | 1     | G     | 30    |       |       |       | <     |     |      | G  | i4 |    |    |    | <  |    |
|                  |        | ~    | 1     |       |       |       | I     |       |       |     |      |    |    |    | L  |    |    |    |
| C[7:0]           | ;      | ×    |       | E     | 30    |       | 1     | R     | 0     |     |      | E  | 34 |    | 1  | B  | 4  |    |

### 4CIF(Full) or CIF(1/4) Mode (Operating clock = MCLK, PLL off)

#### 1. YCbCr 4:2:2 with 8bit output

Register bit configurations :

Sensor Control A : CIF Mode, Full or Sub-sampling Mode

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

|        | Output Format : 8bit Output, Y First, Cb(Blue) First                                                                                                                                              |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MCLK   |                                                                                                                                                                                                   |
| HSYNC  |                                                                                                                                                                                                   |
|        |                                                                                                                                                                                                   |
| 4 Mode | 9 Video Ciock & Output Data                                                                                                                                                                       |
|        |                                                                                                                                                                                                   |
| CLK    |                                                                                                                                                                                                   |
| Y[7:0] | x         Y0         Cb         Y1         Cr         x         x         x         Y4         Cb         Y5         Cr         x         x         Y8         Cb         P9         Cr         x |
| CIF Su | b-Sampling Video Clock & Output Data                                                                                                                                                              |
|        |                                                                                                                                                                                                   |
| CLK    |                                                                                                                                                                                                   |
| Y[7:0] | x         Y0         Cb         Y1         Cr         x         x         x         Y4         Cb         Y5         Cr         x         x         Y8         CB         Y9         Cr         x |

### 2. YCbCr 4:2:2 with 16bit output

Register bit configurations :

Sensor Control A : CIF Mode, Full or Sub-sampling Mode

|         | Output Fo    | rmat:1    | 6bit Ou   | itput, Cb | o(Blue) l | First |      |      |      |      |      |   |
|---------|--------------|-----------|-----------|-----------|-----------|-------|------|------|------|------|------|---|
| MCLK    | Output Fo    |           | ΠΠΠ       | ſIJIJIJ   | ŃIJŊĹ     |       |      |      |      |      |      |   |
| MOLK    |              |           |           |           |           |       |      |      |      |      |      |   |
| HSYNC   |              |           |           |           |           |       |      |      |      |      |      |   |
| 4CIF Mo | de Video Cia | ock & Out | put Data  |           |           |       |      |      |      |      |      |   |
| HSYNC   | ;            |           |           |           |           |       |      |      |      |      |      |   |
| CLK     |              |           |           |           |           |       |      |      |      |      |      |   |
| Y[7:0]  | ×            | YO        | ۲I        | Y2        | ¥3        | ¥4    | ¥5   | YB   | ¥7   | YB   | Y9   | × |
| C[7:0]  | ×            | C601      | Cr01      | Cb23      | Cr23      | Cb45  | Cr45 | Cb67 | Cr67 | С689 | Cr89 | × |
| CIF Su  | b-Sampling   | Video Ci  | ock & Out | tput Data |           |       |      |      |      |      |      |   |
|         |              |           |           |           |           |       |      |      |      |      |      |   |
| HSYNC   | ,            |           |           |           |           |       |      |      |      |      |      |   |
| CLK     |              |           |           |           |           |       |      |      |      |      |      |   |
| Y[7:0]  | ×            | YO        | Y         | Y2        | Y3        | ¥4    | ¥5   | YB   | ¥7   | YB   | Y9   | × |
| C[7:0]  | ×            | Сюг       | Cr01      | Cb23      | Cr23      | Cb45  | Cr45 | Cb67 | Cr67 | Сьеэ | Cr89 | × |

### 3. YCbCr 4:4:4 with 16bit output

Register bit configurations :

Sensor Control A : CIF Mode, Full or Sub-sampling Mode

Output Format : 16bit Output, Y First, Cb(Blue) First

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

## MagnaChip Confidential

| MCLK      |           | ЛЛ    | $\square$ | ΠΠ    |       |       |      |     |     |     |     |     |     |        |     |     |     |     |     |     |     |          |
|-----------|-----------|-------|-----------|-------|-------|-------|------|-----|-----|-----|-----|-----|-----|--------|-----|-----|-----|-----|-----|-----|-----|----------|
| HSYNC     |           |       |           |       |       |       |      |     |     |     |     |     |     |        |     |     |     |     |     |     |     |          |
| 4CIF Mode | Video Cic | ock & | Out       | put C | )ata  |       |      |     |     |     |     |     |     |        |     |     |     |     |     |     |     |          |
| HSYNC     |           |       |           |       |       |       |      |     |     |     |     |     |     | ······ |     |     |     |     |     |     |     |          |
|           |           |       |           |       |       |       |      |     |     |     |     |     |     |        |     |     |     |     |     |     |     |          |
| CLK       |           |       |           |       |       |       |      |     |     |     |     |     |     |        |     |     |     |     |     |     |     |          |
| Y[7:0]    | ×         | YO    | ×         | YI    | ×     | Y2    | ×    | Y3  | ×   | ¥4  | ×   | Y5  | ×   | Y6     | ×   | Y7  | ×   | Y8  | ×   | Y9  | ×   | Y<br>10  |
| C[7:0]    | ×         | СЬО   | Cr0       | СЫ    | Ori   | Cb2   | Cr2  | СЬЗ | Cr3 | Cb4 | Cr4 | Cb5 | Cr5 | Cb6    | Cr6 | Cb7 | Cr7 | Съв | Cr8 | СЬ9 | Cr9 | Cb<br>10 |
| CIF Sub-  | Sampling  | Vide  | o Cie     | ock 8 | k Out | put [ | Data |     |     |     |     |     |     |        |     |     |     |     |     |     |     |          |
|           |           |       |           |       |       |       |      |     |     |     |     |     |     |        |     |     |     |     |     |     |     |          |
| HSYNC     |           |       |           | Π     | Π     |       |      |     |     |     |     |     |     |        |     |     |     |     |     |     |     |          |
| CLK       |           |       |           |       |       |       |      |     |     |     |     |     |     |        |     |     |     |     |     |     |     |          |
| Y[7:0]    | ×         | YO    | ×         | YI    | ×     | Y2    | ×    | Y3  | ×   | ¥4  | ×   | Y5  | ×   | Y6     | ×   | ٧7  | ×   | Y8  | ×   | Y9  | ×   | Y<br>10  |
| C[7:0]    | ×         | СЬО   | Cr0       | СЫ    | Ori   | Cb2   | Cr2  | СЬЗ | Cr3 | Cb4 | Cr4 | Cb5 | Cr5 | Cb6    | Cr6 | Cb7 | Cr7 | Сьв | Cr8 | СЬ9 | Cr9 | Cb<br>10 |

### 4. RGB 5:6:5 with 8bit output

Register bit configurations :

Sensor Control A : CIF Mode, Full or Sub-sampling Mode

|         | Ou            | tpu  | t Fc  | orma  | t : 8 | bit ( | Outp  | out,   | Cb(  | Blue | e) Fi | irst, | RG  | B5:6 | 6:5 |     |     |     |     |     |     |     |     |          |
|---------|---------------|------|-------|-------|-------|-------|-------|--------|------|------|-------|-------|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|
| MCLK    | -             |      |       |       |       |       |       |        |      |      |       |       |     |      |     |     |     |     |     |     |     |     |     |          |
| HSYNC   |               |      |       |       |       |       |       |        |      |      |       |       |     |      |     |     |     |     |     |     |     |     |     |          |
| 4CIF Ma | ode \         | /lde | o Cle | ock & | Out   | put C | Data  |        |      |      |       |       |     |      |     |     |     |     |     |     |     |     |     |          |
| HSYNC   | ; -           |      |       |       |       |       |       |        |      |      |       |       |     |      |     |     |     |     |     |     |     |     |     |          |
| CLK     | -             |      |       |       |       |       |       |        |      |      |       |       |     |      |     |     |     |     |     |     |     |     |     |          |
| Y[7:0]  | [             | x    | ×     | RG0   | GB0   | RGI   | GBI   | RG2    | GB2  | RG3  | GB3   | RG4   | GB4 | RG5  | GB5 | RG6 | GB6 | RG7 | GB7 | RG8 | GB8 | RG9 | GB9 | RG<br>10 |
| CIF SI  | u <b>b</b> —5 | Samı | pling | Vide  | o Cid | ock 8 | k Out | tput ( | Data |      |       |       |     |      |     |     |     |     |     |     |     |     |     |          |
| CLK     | -             |      |       |       |       |       |       |        |      |      |       |       |     |      |     |     |     |     |     |     |     |     |     |          |
| Y[7:0]  | [             | ×    | ×     | RGO   | GB0   | RGI   | GBI   | RG2    | GB2  | RG3  | GB3   | RG4   | GB4 | RG5  | GB5 | RG6 | GB6 | RG7 | GB7 | RG8 | GB8 | RG9 | GB9 | RG<br>10 |

### 5. RGB 5:6:5 with 16bit output

Register bit configurations : Sensor Control A : CIF Mode, Full or Sub-sampling Mode Output Format : 16bit Output, Cb(Blue) First, RGB5:6:5

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

## MagnaChip Confidential

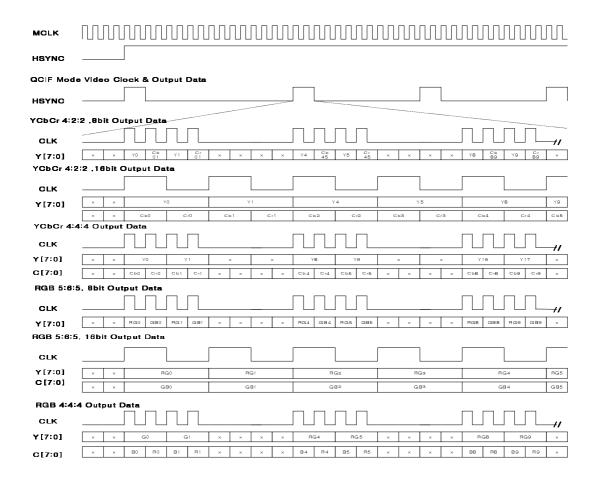
#### MCLK HSYNC 4CIF Mode Video Clock & Output Data HSYNC CLK Y[7:0] RG 2 RG 3 RGS RGE C[7:0] GB GB2 GB6 GB: GB8 GB GBI GB4 GB CIF Sub-Sampling Video Clock & Output Data CLK RG RG 2 RG 3 RGS RGE RGS Y[7:0] RG4 RGE 3 B 1 0 GBI GB2 GBS GB8 GBS GB4 GB GB6 GB:

### 6. RGB 4:4:4 with 16bit output

Register bit configurations :

Sensor Control A : CIF Mode, Full or Sub-sampling Mode

|         | Outpu   | ut Fo | orma  | at: ' | 16bi  | t Oi      | utpu   | t, C | b(B       | lue) | Firs      | st, F     | RGB       | 4:4:      | 4  |    |    |                   |    |           |           |           |         |
|---------|---------|-------|-------|-------|-------|-----------|--------|------|-----------|------|-----------|-----------|-----------|-----------|----|----|----|-------------------|----|-----------|-----------|-----------|---------|
| MCLK    | ΠÌΠ     | ЛЛ    | ЛЛ    | ЛЛ    | ΠΠ    | ΠЛ        | ГЛ     |      | ПЛ        | ΠŃ   | ЛЛ        | ΠĹ        | ЛЛ        | ΠΠ        |    |    |    | $\square \square$ |    | ЛЛ        | ЛЛ        | ЛЛ        |         |
|         |         |       |       |       |       |           |        |      |           |      |           |           |           |           |    |    |    |                   |    |           |           |           |         |
| HSYNC   |         |       |       |       |       |           |        |      |           |      |           |           |           |           |    |    |    |                   |    |           |           |           |         |
| 4CIF Mo | de Vide | o Cic | ock 8 | Out   | put C | Data      |        |      |           |      |           |           |           |           |    |    |    |                   |    |           |           |           |         |
| HSYNC   | :       |       |       |       | -     |           |        |      |           |      |           | ]         |           |           |    |    |    |                   |    |           |           | ]         |         |
| CLK     |         |       |       |       |       |           |        |      |           |      |           |           |           |           |    |    |    |                   |    |           |           |           |         |
| ¥[7:0]  | ×       | ×     | G     | 90    | G     | 11        | G      | 2    | G         | 13   | 6         | 94        | G         | 15        | G  | e  | G  | 7                 | G  | 8         |           | 19        | G<br>10 |
| C[7:0]  | ×       | ×     | во    | Ro    | B1    | B1        | Bg     | Rg   | Вз        | F3   | B4        | F4        | B5        | Rs        | Be | Re | B7 | R7                | Be | Re        | Bg        | Rg        | B<br>10 |
| CIF SL  | b-Sam   | pling | Vide  | o Cie | ock á | L Out     | tput C | Data |           |      |           | ]         |           |           |    |    |    | ]                 |    |           |           |           |         |
|         |         |       |       | L     |       |           |        |      |           |      | 1         | L         |           |           |    |    |    |                   |    |           |           |           |         |
| CLK     |         |       |       |       |       | $\square$ |        |      | $\square$ |      | $\square$ | $\square$ | $\square$ | $\square$ |    |    |    |                   |    | $\square$ | $\square$ | $\square$ |         |
| OLIX    |         |       |       |       |       |           |        |      |           |      |           |           |           |           |    |    |    |                   |    |           |           |           | _       |
| Y[7:0]  | ×       | ×     |       |       |       | J L       | G      | 2    |           | 13   |           | 14        |           | 15        | G  | 6  | G  | 7                 |    |           |           | 19        | G<br>10 |


### **QCIF(1/16) Mode** (Operating clock = MCLK, PLL off)

Register bit configurations :

Sensor Control A : CIF Mode, Bayer Sub-sampling, 1/16 Sub-sampling Mode

Output Format : 8bit Output, Y First, Cb(Blue) First

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.



### Bayer Data Format (Operating clock = MCLK, PLL off)

Output Format is controlled by configuring Sensor Control C(SCTRC) and Output Format(OUTFMT) register. Configurable options are specified again for your reference.

### 8bit/16bit raw or gamma-corrected Bayer output

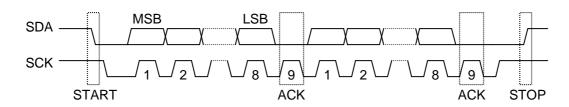
When Bayer output mode is selected, Window Width x Window Height raw image data is produced with the following sequence. After VSYNC goes low state, the first HSYNC line of a frame is activated with B pixel data appearing first when both of Column Start Address and Row Start Address are even.

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

MagnaChip Confidential

| K                |                |            |           |                   |           |           |    |          |        |                                      |     |        |
|------------------|----------------|------------|-----------|-------------------|-----------|-----------|----|----------|--------|--------------------------------------|-----|--------|
| NC               |                |            |           |                   |           |           |    |          |        |                                      |     |        |
| Bus Ba           | ayer Mode      | Video Cl   | ock & 8bi | t Output          | Data (Eve | n)        |    |          |        |                                      |     |        |
| к                |                |            |           |                   |           |           |    |          |        |                                      |     |        |
| 0]               | ×              | BO         | GO        | BI                | GI        | B2        | G2 | B3       | G3     | B4                                   | G 4 |        |
|                  | E              | 30[10:3]   |           | GO [10:3]         |           |           |    |          |        |                                      |     |        |
|                  |                |            |           |                   | <br>      | (5)       |    |          |        |                                      |     |        |
| SUS Ba           | ayer VGA       |            |           |                   |           | (Even)    | 1  |          | 7      |                                      | 7   |        |
|                  |                |            |           |                   |           |           |    |          |        |                                      |     |        |
|                  | ×              |            | 30        |                   | <br>G0    | -<br>E    | 31 |          | <br>31 |                                      | B2  | _<br>_ |
| bus B            | ayer QVG/      | A Mode Vi  | ideo Cloc | k & 8bit (        | Output Da | ta (Even) |    |          |        |                                      |     |        |
| bus B            | ayer QVG/      | A Mode Vi  | ideo Cloc | k & 8bit (        | Output Da | ta (Even) |    |          |        |                                      |     |        |
| dus B            | ayer QVG/      | A Mode Vi  |           | k & 8bit (        | Dutput Da | ta (Even) | C  | G0       |        |                                      | BI  |        |
|                  |                |            | E         | 30                |           | ta (Even) |    | G0       |        |                                      | BI  |        |
|                  | X              |            | E         | 30                |           | ta (Even) |    |          |        |                                      | BI  |        |
| t Bus            | X              |            | E         | 30                |           | ta (Even) | G2 | 30<br>B3 | G3     |                                      | B1  |        |
| t Bus<br>K       | Bayer Mod      |            |           | 11bit Out         | put Data  |           |    |          | G3     | Б4                                   |     |        |
| t Bus<br>K       | ×<br>Bayer Mod |            | Clock &   | 11bit Out         | put Data  |           |    |          | G3     | <br>В4                               |     |        |
| t Bus<br>K<br>0] | X<br>Bayer Mod | de Video ( | Elock &   | 11 <b>bit Out</b> | put Data  |           |    |          | G3     | B4                                   |     |        |
| t Bus<br>K<br>0] | Bayer Mod      | de Video ( | Elock &   | 11 <b>bit Out</b> | put Data  |           |    |          | G3     | Б<br>В<br>В<br>В<br>С<br>В<br>С<br>С |     |        |
| t Bus<br>K<br>0] | X<br>Bayer Mod | de Video ( | Elock &   | 11 <b>bit Out</b> | put Data  |           |    |          | G3     | B4                                   |     |        |

## Window mode and image size


C[7:0]

| Mode       | Width | Height |
|------------|-------|--------|
| Full(SXGA) | 1280  | 960    |
| 1/4(VGA)   | 640   | 480    |
| 1/16(QVGA) | 320   | 240    |
| 4CIF       | 704   | 576    |
| CIF        | 352   | 288    |
| QCIF       | 176   | 144    |

\* Note: The 'Width' means the number of VCLK during HSYNC is active high and the 'Height' means the number of HSYNC during VSYNC is active low.

### I2C Chip Interface

The serial bus interface consists of the SDA(serial data) and SCK(serial clock) pins. HV7161SP sensor can operate only as a slave. The SCK only controls the serial interface. However, MCLK should be supplied and RESET should be high signal during controlling the serial interface. The Start condition is that logic transition (High to Low) on the SDA pin while the SCK pin is at high state. The Stop condition is that logic transition (Low to High) on the SDA pin while the SCK pin is at high state. To generate Acknowledge signal, the Sensor drives the SDA low when the SCK pin is at high state. Every byte consists of 8 bits. Each byte transferred on the bus must be followed by an Acknowledge. The most significant bit of the byte should always be transmitted first.



### **Register Write Sequences**

### One Byte Write

| S  | 22H | А  | 01H | А  | 03H | А  | Р  |
|----|-----|----|-----|----|-----|----|----|
| *1 | *2  | *3 | *4  | *5 | *6  | *7 | *8 |

Set "Sensor Control A" register into Window mode

- \*1. Drive: I2C start condition
- \*2. Drive: 22H(001\_0001 + 0) [device address + R/W bit]
- \*3. Read: acknowledge from sensor
- \*4. Drive: 01H [sub-address]
- \*5. Read: acknowledge from sensor
- \*6. Drive: 03H [Video Mode : SXGA]
- \*7. Read: acknowledge from sensor
- \*8. Drive: I2C stop condition

### Multiple Byte Write using Auto Address Increment

| S  | 22H | А  | 76H | А  | 70H | А  | 70H | А  | Ρ   |
|----|-----|----|-----|----|-----|----|-----|----|-----|
| *1 | *2  | *3 | *4  | *5 | *6  | *7 | *8  | *9 | *10 |

Set "LuTarget1, LuTarget2" register as 70H, 70H with auto address increment

\*1. Drive: I2C start condition

\*2. Drive: 22H(001\_0001 + 0) [device address + R/W bit]

\*3. Read: acknowledge from sensor

- \*4. Drive: 76H [sub-address]
- \*5. Read: acknowledge from sensor
- \*6. Drive: 70H [LuTarget1]
- \*7. Read: acknowledge from sensor
- \*8. Drive: 70H [LuTarget2]
- \*9. Read: acknowledge from sensor
- \*10. Drive: I2C stop condition

### **Register Read Sequence**

| S  | 22H | А  | 50H | А  | S  | 23H | А  | Data of 50H | А   | Ρ   |
|----|-----|----|-----|----|----|-----|----|-------------|-----|-----|
| *1 | *2  | *3 | *4  | *5 | *6 | *7  | *8 | *9          | *10 | *11 |

Read "Gamma Slope 6" register from HV7161SP

- \*1. Drive: I2C start condition
- \*2. Drive: 22H(001\_0001 + 0) [device address + R/W bit(be careful. R/W=0)]
- \*3. Read: acknowledge from sensor
- \*4. Drive: 50H [sub-address]
- \*5. Read: acknowledge from sensor
- \*6. Drive: I<sup>2</sup>C start condition
- \*7. Drive: 23H(001\_0001 + 1) [device address + R/W bit(be careful. R/W=1)]
- \*8. Read: acknowledge from sensor
- \*9. Read: Read "Gamma Slope 6" from sensor

\*10. Drive: acknowledge to sensor. If there is more data bytes to read, SDA should be driven to low and data read states(\*9, \*10) is repeated. Otherwise SDA should be driven to high to prepare for the read transaction end.

\*11. Drive: I2C stop condition

## AC/DC Characteristics

### **Absolute Maximum Ratings**

| Symbol                                           | Parameter                          | Units | Min. | Max. |
|--------------------------------------------------|------------------------------------|-------|------|------|
| Vpp:ph                                           | I/O and pixel block supply voltage | Volts | -0.3 | 3.62 |
| Vpp:p Internal analog and digital supply voltage |                                    | Volts | -0.3 | 2.5  |
| Vipp Input signal voltage                        |                                    | Volts | -0.3 | 3.3  |
| Top Operating Temperature                        |                                    | °C    | -10  | 50   |
| Tst                                              | Storage Temperature                | °C    | -30  | 80   |

\* Caution: Stresses exceeding the absolute maximum ratings may induce failure.

| Symbol | Parameter                                           | Units | Min. | Тур.       | Max. | Load[pF] |
|--------|-----------------------------------------------------|-------|------|------------|------|----------|
| Vdd:ph | I/O and pixel block supply<br>voltage               | Volt  | 2.3  | 2.5 to 2.8 | 2.9  |          |
| Vdd:p  | Internal analog an digital operation supply voltage | Volt  | 1.6  | 1.8        | 2.0  |          |
| Vih    | Input voltage logic "1"                             | Volt  | 2.0  |            |      | 30[pF]   |
| Vil    | Input voltage logic "0"                             | Volt  |      |            | 0.8  | 30[pF]   |
| Voh    | Output voltage logic "1"                            | Volt  | 2.4  |            |      | 30[pF]   |
| Vol    | Output voltage logic "0"                            | Volt  |      |            | 0.4  | 30[pF]   |
| lih    | Input High Current                                  | uA    | -10  |            | 10   | 30[pF]   |
| lil    | Input Low Current                                   | uA    | -10  |            | 10   | 30[pF]   |
| Та     | Ambient operating temperature                       | °C    | -10  | 25         | 50   |          |

### DC Operating Conditions

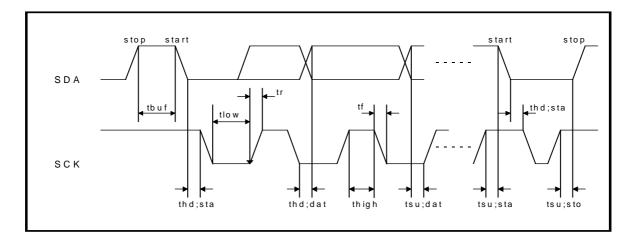
### **AC Operating Conditions**

| Symbol | Parameter                        | Parameter Max Operation Frequency |     |     |
|--------|----------------------------------|-----------------------------------|-----|-----|
| MCLK   | Main clock frequency             | clock frequency 21                |     | 1,2 |
| SCK    | I <sup>2</sup> C clock frequency | 400                               | KHz | 3   |

1. MCLK may be divided by internal clock division logic for easy integration with high speed video codec system.

2. Frame Rate : 15 frames/sec at 21Mhz, HBLANK = 208, VBLANK = 8

3. SCK is driven by host processor. For the detail serial bus timing, refer to I2C chip interface section


### **Output AC Characteristics**

All output timing delays are measured with output load 30[pF]. Output delay includes the internal clock path delay and output driving delay that changes in respect to the output load, the operating environment, and a board design. Due to the variable valid time delay of the output, video output signals Y[7:0], C[7:0], HSYNC, and VSYNC may be latched in the negative edge of VCLK for the stable data transfer between the image sensor and video codec.

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.



### I2C Bus Timing

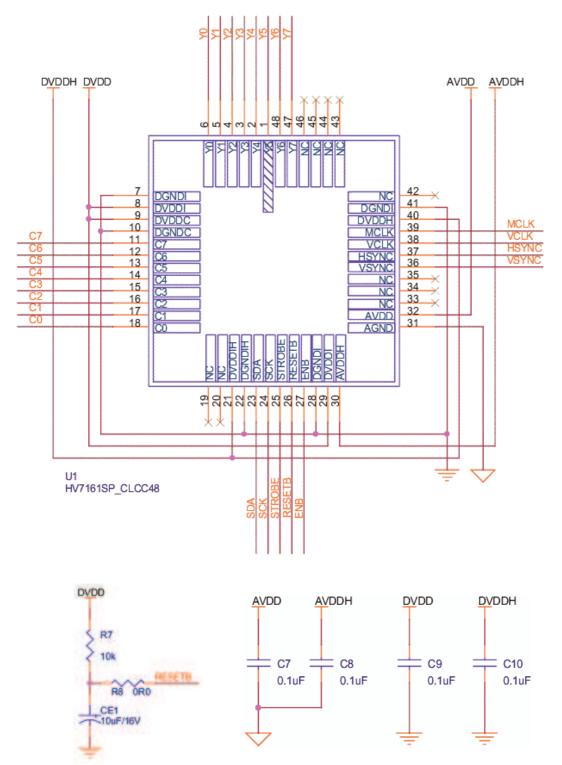


| Parameter                                                                          | Symbol                           | Min. | Max. | Unit |
|------------------------------------------------------------------------------------|----------------------------------|------|------|------|
| SCK clock frequency                                                                | f <sub>sck</sub>                 | 0    | 400  | KHz  |
| Time that I <sup>2</sup> C bus must be free before a<br>new transmission can start | t <sub>buf</sub>                 | 1.2  | -    | us   |
| Hold time for a START                                                              | t <sub>hd</sub> ;s <sub>ta</sub> | 1.0  | -    | us   |
| LOW period of SCK                                                                  | t <sub>low</sub>                 | 1.2  | -    | us   |
| HIGH period of SCK                                                                 | t <sub>high</sub>                | 1.0  | -    | us   |
| Setup time for START                                                               | t <sub>su</sub> ;s <sub>ta</sub> | 1.2  | -    | us   |
| Data hold time                                                                     | t <sub>hd</sub> ;d <sub>at</sub> | 0.1  | -    | us   |
| Data setup time                                                                    | t <sub>su</sub> ;d <sub>at</sub> | 250  | -    | ns   |
| Rise time of both SDA and SCK                                                      | t <sub>r</sub>                   | -    | 300  | ns   |
| Fall time of both SDA and SCK                                                      | t <sub>f</sub>                   | -    | 300  | ns   |
| Setup time for STOP                                                                | t <sub>su</sub> ;s <sub>to</sub> | 1.2  | -    | us   |
| Capacitive load of SCK/SDA                                                         | Cb                               | -    | -    | pf   |

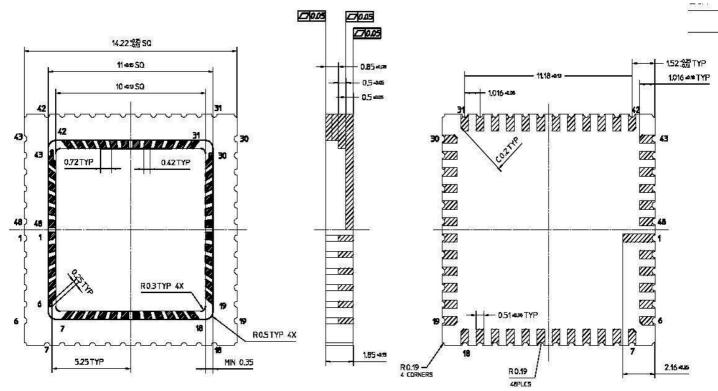
| Parameter                                                  | Units        | Min. | Тур. | Max. | Note    |
|------------------------------------------------------------|--------------|------|------|------|---------|
| G Sensitivity                                              | mV / lux∙sec |      | 1700 |      |         |
| Dark Signal                                                | Code         |      | 2.13 |      | 0 ~ 255 |
| Saturation                                                 | Code         |      | 190  |      | 0 ~ 255 |
| Dynamic range                                              | dB           |      | 48   |      |         |
| SNR                                                        | dB           |      |      | 40   |         |
| Power Consumption (25 $^\circ\!\!\!\!\mathrm{C}$ ) $^{1)}$ | mW           | 51   | 73   | 95   |         |

### **Electro-Optical Characteristics**

Note 1). Others except power consumption are tested under below electro-optical test condition, and the power consumption is tested under default operating condition at MCLK 25MHz and PLL off.


### Electro-Optical Test Condition (Temperature = 50°C)

| Parameter            | Description                                                          |
|----------------------|----------------------------------------------------------------------|
| G Sensitivity        | preamp gain = 2x, R/G/B gain = 1x, 30lux, integration time @ 128code |
| Dark Signal          | preamp gain = 2x, R/G/B gain = 1x, 1/10sec, 0lux                     |
| Saturation           | preamp gain = 1x, R/G/B gain = 1x, 1/10sec, 100lux                   |
| Dynamic range        | (Temperature = 30 °C)                                                |
| SNR                  | (Temperature = 30 °C)                                                |
| DC and AC conditions | Internal 1.8V and 2.6V, and I/O 2.6V@ MCLK 25Mhz, PLL off            |


- Color temperature of light source: 3200K / IR cut-off filter (CM-500S, 1mm thickness) is used.

This document has a general product description and is subject to change without notice. MagnaChip Semiconductor Ltd. does not assume any responsibility for use of circuits described and no patent licenses are implied.

## **Typical Application**







# MagnaChip Semiconductor Ltd. System IC SP Div.

## \* Contact Point \*

### **CIS Marketing Team**

15Floor, MagnaChip Youngdong Bldg. 891 Daechi-Dong Kangnam-Gu Seoul 135-738 Republic of Korea Tel: 82-2-3459-5579 Fax: 82-2-3459-5580 E-mail : <u>suyeon.moon@MagnaChip.com</u>